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PREFACE 

This book is intended for: 

1. Readers who liked mathematics at school but never studied it further. 

2. Young people with mathematical talent. 

3. Teachers who are looking for inspirational material for school.   

Each reader will study different parts of the book in different ways. Not many are likely to 

read every page, but then, not every visitor to an art museum looks at every painting. You do 

what you find enjoyable and find the time for; you may even think of coming several times.  

Chapters can be read in almost any order.  Nor is it necessary to read the whole of a chapter.  

Many sections indicate optional material.  In particular, the solved problems are optional. The 

more difficult calculations are often put into the solved problems, and even if one does not 

read these, one still gets an understandable account.   

The aim of the book is expressed by its title, namely to give examples of mathematics which 

is practical and useful in everyday life, examples of beautiful mathematics, and to illustrate 

the logical arguments used in mathematics, i.e. proof.  Practical topics include  approximation 

and the use of the powers of 10 notation. Then there is percentages, and estimating various 

quantities with simple calculations (Chapter 4), some knowledge of graphs, some probability 

and statistics. There is also a chapter on units like Watts and horsepower. 

Proof is demonstrated for instance by proving Pythagorasôs theorem, and using numbers to 

derive Euclidean Geometry.   

There are some beautiful classical results
1
 such as examples of a finite Geometry and a 

Projective Geometry, the existence of an infinite number of primes, and the irrationality of the 

square root of 2.  Fermatôs little and last theorems and the estimation of the number of primes 

less than a given number N, are discussed. Finally, we return to counting but this time 

counting infinite sets, and have the striking results of Cantor such as there are as many points 

on a line of length 1 as on a line of length 2.   

Much could be added, but we have chosen to be brief in order to present a more easily 

comprehendible book.  There is much of value and interest anyway.     

We have tried as far as possible to provide mathematics, which the reader can verify for 

himself or herself, and not have to rely on our authority. 

 

The book begins with topics that would normally be discussed in school, and ends with 

topics, which would normally appear in a university course on mathematics.  The careful 

choice of material and presentation provides an account which is understandable by those who 

have studied secondary school mathematics.  Because we give a self-contained account, the 

reader who has forgotten the school mathematics will be reminded of some of the details.  

What is required of the reader is a flexible mind, curiosity, and the sort of patience and 

determination that is required to play bridge or chess or solve cross- word or sudoku puzzles.   

                                                 

1
 Until you have read the relevant chapters the following is only partly understandable. 
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The examples are from different countries, England or Sweden or the U.S.A. But these are 

only examples which are meant to illustrate various methods, and the reader will with their 

help apply these techniques to their own interests and  needs.  

The material in this book is not original to us.  

There are many brilliant ideas in mathematics. If we can introduce you to some of them it will 

be an honor and a privilege.   
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Chapter 1  

PRELIMINARIES AND A LITTLE FUN 

Mathematics begins with a guess, just as naturally as love begins with a kiss. 

 

§1 How to read this book 

This is a book for people who choose to read for fun and enlightenment. Doing mathematics 

voluntarily means you can pick and choose what you want to do. 

Reading mathematics is slower than reading other subjects. You may expect to read a page in 

a few minutes if you read a novel: with mathematics you can be lucky to read a sentence at 

that speed. The subject is concentrated. So do not try to study too much at one sitting, it being 

better to learn a little well rather than a lot badly. 

We have laid out this book in the best way for our minds. Since your mind is different, you 

may prefer to change the order. You may skip sections you find boring. Do so. But be 

prepared to return to them later, when maybe they make more sense. 

The chapters are on the whole independent and so can be read in the order you prefer.  .  

There are three main exceptions;  Chapter 10 §1 to §4 inclusive on linear equations is needed 

for Chapter 12 §2 on Geometry.  Chapter 9 §1 on coordinates is needed for Chapter 11 on 

functions. 

Chapter 8 §1 to §4 inclusive on logarithms is needed for Chapter 15 §4 on the number of 

primes less than a given number.  

 

Solved problems can be skipped at without loss of intelligibility. Among these problems 

will be more detailed or technical arguments and laving them out will make following the 

text easier.  One can always return to them later if one feels like it.  Many problems are of 

interest in themselves.  Also often a solved problem can explain a difficulty- 

Solved problems are also good for practice.   It is more fun and instructive to do them 

oneself before reading the solution.  Solving problems on oneôs own is not so easy.  You 

may find it useful to read the book ñHow to solve itò by Polya if you are interested.  But 

in any case, the problems are optional.  
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FIGURE 1. George Pólya (1887-1985), a talented mathematician of the 20th century. 

Towards end of his life he was much interested in the teaching of mathematics, see 

his book ñHow to solve it.ò 

 

§2 Ask questions 

One is sometimes admonished not to ask stupid questions. There are two ways of doing this, 

either ask no questions, i.e. give up learning, or else know the subject so well that you can 

avoid asking the stupid questions. In other words, ignore the advice to avoid asking stupid 

questions.  

And donôt be afraid to estimate or to guess. Even a wild guess can help you. I would hesitate 

to give this advice in say Chemistry. You may run the danger of an explosion if you guess 

which chemicals to combine, but in mathematics nothing so drastic can occur. 

§3 Indispensable tools for reading this book 

Pencil and paper are essential for reading this mathematics book and any other mathematics 

book. This is because the best and easiest way to follow an argument is to do the calculations 

yourself. Not only must you have pencil and paper to hand, you must use them all the time. 

The text in the book you use will give you a clue as to what you should be doing. Often it 

helps to write the definitions or the assertions in your own hand to absorb and understand 

them. We have assumed that enough of what you studied at school either remains or else you 

will be reminded of it as you read. If that is not the case, the book may be very hard to read, 

since it does not begin from the beginning. However we feel that most people will be able to 

cope. 

In particular, we hope you remember the use of symbols in mathematics. To write a product 

li ke 3³4 we use ³ in between, but if we have represented an unknown number by a symbol x 

say, and we take twice this quantity, we leave out the multiplication sign and simply write 2x. 

Thus if one is searching for an unknown quantity x and twice this quantity plus 4 is 10, then 

this is written briefly as 2x + 4 = 10. 

Example of how symbols help understanding: 

Here is a party trick. You ask somebody to do the following: 

¶ Think of a whole number between 1 and 9 
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¶ Multiply by 5. Add 3. Multiply by 2. 

¶ Then think of another whole number between 1 and 9 and add it to your total. 

¶ Give me your answer. 

You can then at once tell the person the two numbers. All you have to do is to take away 6 

from the total he gives you. Then the tens will be the first number thought of and the units the 

next number. For instance, suppose he thinks of the numbers 4 and 7. The first step he has to 

do is to multiply by 5 thus getting 20. To that he adds 3 getting 23. He then multiplies by two 

to get 46. Adding 7 gives a total of 53. So in telling him the numbers he thought of you 

subtract 6 to get 47. Thus 4 was the first number he thought of and 7 the second. 

How it works is easy to see with the use of symbols 

Thus let x and y denote the numbers thought of. Multiplying x by 5 gives 5x. Adding 3 gives 

5x + 3. When we multiply by 2 we get 10x + 6. We then add y to get 10x + y + 6. When we 

subtract 6 we get 10x + y. Since x and y are numbers between 1 and 9, x becomes the tens and 

y becomes the units. 

Another example of how symbols help understanding: 

This is the hand method of learning the product of two numbers lying between 6 and 10 

Baumslagôs father used this method for teaching young children who had mastered 

multiplying numbers lying between 1 and 5 how to deal with larger numbers. Place both 

hands in front of you with palms facing.  The thumb in each hand represents 6, the next finger 

7 and so on, till the little finger which represents 10.  To find the product of two numbers, say 

7 and 8, place the finger representing 7 on the left hand on the finger representing 8 on the 

right hand.   Count the fingers touching and those up to and including the thumbs.  In this case 

5, and count 5 tens, i.e. 50.  There are three fingers on the left hand, and 2 on the right hand 

which have not been counted.  Multiply the two and three to get 6, and add to the 50 to get the 

product 56. This method helps children to multiply two numbers each lying between 6 and 10.    

We can explain how this method works as follows:  Let s be the finger on the left hand and t 

the finger on the right hand.  Then this represents the product of  5 + s and 5 + t.   This is 25 + 

5s + 5t + st.   

The calculation we do is to count the number of fingers from the touching fingers to the 

thumbs and this is (s + t), and count them as 10s, i.e. we get 10s + 10t.  To this we add the 

product of the remaining fingers, i.e.  5 - s and 5 - t, getting  25 ï 5s - 5t + st. 

Adding this to  the 10s + 10t gives us 25 +5s + 5t + st, i.e. the same as we got before.  . 

 

 

§4 Sets, numbers and infinity 

The numbers 1,2,3,  etc., are called whole numbers. A set is a synonym for a collection: for 

instance, the collection of all whole numbers. This is denoted by {1, 2, 3, é}, where the 

squiggly brackets are a convention for denoting a set. The objects or elements of the set are 

the whole numbers, 1, 2, 3, é and the dots are understood to mean that the list continues 

forever. 

Modern Mathematics explains much in terms of sets, and we will do so as well in this book. 
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The set of whole numbers is an infinite set. If you tried to list them in a finite number of steps 

you could not. An example of a finite set would be {1, 2, 3}. 

The set of all atoms on the Earth, although huge, is not an infinite set. In theory one could list 

all the atoms, and after a while the list would come to a stop. 

For centuries mathematics consisted of the study of numbers and geometry. This has long ago 

ceased to be the case, but we will stick to these parts of mathematics. 

In addition to the whole numbers, we also have the fractions, numbers which are one whole 

number divided by another, like ¾. The fractions are also called rational numbers. The 

rational numbers also include the negative fractions.  

The rational numbers can also be expressed as decimal expansions.   These can be finite, 

or else infinite, like 1/3 = ,33333é  But if a rational numberôs decimal expansion is 

infinite, then it has a repeat pattern after a while.  If we allow these, and all other possible  

decimal expansions, both positive and negative, then we obtain the set of all numbers 

These are called Real Numbers to distinguish them from the Imaginary Numbers, 

which involve the square root of ï 1.   

 

A useful word in mathematics is ñtheorem,ò which means ñimportant deduction or result.ò 

§5 A little fun. 

1. Multiplying any two numbers using only the two times table. 

 
We can multiply any two numbers by multiplying solely by 2 and dividing solely by 2.  We 

illustrate the method by working out  46 ³33. 

We write the numbers in two columns.  The next row is produced by multiplying the 

fi rst number by 2 and dividing the second number by 2.  We ignore any halves that 

appear. We continue in this way till we get to 1 in the right-hand column.   

46 33 

92 16 

184 8 

368 4 

736 2 

1472 1 

We then add all the numbers in the left-hand column, which are opposite an odd number in 

the right-hand column.  The result is the product of the  two numbers.  Thus in the example 

we have chosen, we get 

1472 + 46 = 1518 which is the answer. 

 

2. The game of Nim   

The game of Nim is played with matches (or tooth-picks for non-smokers.)   
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There are two players.  One arranges the matches in as many piles as desired, with as many 

matches as desired in each pile.  Each player at each move chooses a pile and takes as many 

matches as he or she wants.   But each player must take at least one match on every move.  At 

each move one must restrict oneself to one pile only.  The LOSER is the person who takes the 

last match. 

Now there is a strategy for winning.  We take two special cases rather than the general case.   

Two piles Nim 

If there are only two piles and it is your turn, then if one pile has only one match, take the 

other pile away.  If each pile has more than one match, then take matches away from the 

larger pile to leave two piles with the same number of matches.  If on your turn both piles 

have the same number of matches, then you will lose if your opponent knows the strategy.  

Otherwise you can take away only one match from one pile, hoping that your opponent does 

not know the method.   

One pile with one match and two other piles. 

When there are three piles each with one match, the person to makes the first move loses. So 

if there are two piles with one match in each and a third pile with two or more matches, leave 

only one match in the larger pile. 

If two piles have more than one match, check the number of matches in each. 

Case a) The two piles have the same number of matches in them and this is more than 

one  match. Take away the pile with one match to get the two pile situation described above.   

Case b) The smaller of the two piles with more than one match has an odd number of 

matches.  Take matches away from the larger pile so that it has one match less than the 

smaller. 

Case c) The smaller of the two piles with more than one match has an even number of 

matches.   

Take matches away from the larger pile so that it has one match more than the smaller. 
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CHAPTER 2 

SQUARING, CHECKING AND APPROXIMATION 

 Mathematicians like the rest of us make mistakes. But, being accustomed to 

checking, they usually detect their mistakes before it is too late. 

§1 Introduction 

All of us have learnt the basic skills we need to do many arithmetic calculations. 

We are suggesting that instead of letting our skills degenerate, we try to use them every day to 

think and make interesting conclusions. It is so seldom that we use these basic skills that we 

may now no longer be adept in adding, multiplying and dividing. Many think that does not 

matter, we can always use an electronic calculator, and so we can. But there is still a place for 

these basic skills, and most important, personal satisfaction in being able to do these 

calculations oneself. So in this chapter we will begin by practicing. In these initial sections, 

we will also find methods of checking the calculation. 

§2 Finding a square 

When we write (45)
2
 we mean 45 times 45. More generally, if x is any number, x

2
 means x 

times itself. We say ñx-squaredò, because it represents the area of a square of side x. 

There is a quick way of working out the square of a number ending in 5. The general rule is: 

Remove the last digit, 5, multiply the remaining number, call it r, by r+1 and attach 25. For 

instance, to calculate (45)
2
, remove the 5, leaving 4, multiply 4 by 4 + 1 = 5 to get 20, attach 

25 to get the answer 2025. (Why this method works is explained in problem 11 §7.) 

 

Example: (995)
2
. (Some advice: Before reading the solution to an example, work through 

the problem yourself and read the solution only if you get stuck or wish to verify that 

you are correct.) 

Solution: Take away the 5 to get 99 (r in this case), add 1 to get 100 (i.e. r + 1), multiply 99 

and 100 to get 9900, and attach 25 to get the answer of 990025. 

 

Of course you can calculate this result by multiplying 995 by 995, using the usual method of 

multiplying numbers, but this method is simpler and quicker. 
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You may say, why should I bother with such a calculation. Is that not the reason for 

calculators? Yes, you are right. But using a calculator is tantamount to letting some authority 

tell you the result. Which is a pity, since mathematics is the one subject where you can rely on 

yourself, and not on authority. 

§3 Checking 

Casting out nines 

In §2 we calculated the square of 995. Can we check the result? 

It may seem over the top to bother about checking in this particular case, since it is not a very 

complicated calculation, but by discussing what happens in such a calculation we are 

preparing the ground for how to handle much more difficult problems. Mathematicians are 

keen to check their calculations, because often other things depend on them, and one wants to 

be absolutely certain. It is also surprisingly easy to make mistakes, even using electronic 

devices. Repeating a calculation is also a good method of checking, but often one tends to 

repeat the same mistakes when doing the second calculation. 

If the following check fails, we will know that the result is false. If the check succeeds, the 

result may nevertheless be wrong. But this check is useful for all sorts of arithmetic 

calculations. It is called the method of casting out nines. But first, we must define the 

checksum of a number. We can illustrate by 867. We begin by adding the digits of 867: 8+6+7 

= 21. Since the sum is greater than 8, we repeat the process with 21, that is, we add the digits 

of 21 to get 3. Since 3 is less than 8, the checksum of 867 is 3. One further point, if the 

number 9 occurs anywhere in our calculations, we replace it by 0. For example, the checksum 

of 9 is 0. Also, the checksum of 291 is 2+0+1, or 3,which we obtained by replacing the 

middle digit, 9, by 0. 

The method is based on the following fact: If the result of a product is correct, then the 

product of the checksums of the factors must be the same as the checksum of the answer. As 

an example of the method, suppose we are to check that the product, 35³23, is 805. We begin 

by replacing the numbers 35, 23 and 805 by their checksums, 8, 5 and 4, obtained by adding 

their digits. (For instance, 805 is replaced by 8+0+5 = 13, but since 13 is larger than 8, we 

further replace 13 by the sum of its digits, 1+3=4.) Multiply 8 and 5, the checksums of 35 and 

23, to get 40. Add the digits of 40 to get 4. Since this matches the checksum of 805, the check 

is positive, and we have increased our confidence in the result, though the accuracy is not 

guaranteed. 

The reason the method is called casting out nines is the rule that to obtain the checksums all 

9s in the calculation are replaced by 0. For instance, applying the check to 9³9=81 gives 0³0 

for the product, while the answer has checksum 8 + 1 = 9 which we replace by 0. Thus the 

check works. 

We check the example in §2: 995³995 is supposed to be 990025. We replace the 9ôs with 0s 

to get for the sum of the digits 0 + 0 +2 + 5 = 7. The sum of the digits in 995 with 9s replaced 

by 0 is 5, and 5x5 is 25 which has checksum 7, the checksum of the answer. This increases 

our confidence in the result. 

(Chapter 15 §7 gives an explanation of why casting out nines works.) 

Example 

Use the method of casting out nines to check whether 74³38 =2,712. 
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Solution: Sum of digits of 74 is 11, and the sum of digits in 11 is 2. Sum of digits in 38 is also 

11, which becomes 2 when we sum its digits. The product of the two checksums is 4, and this 

should agree with the check on the given answer. The sum of the digits in the given answer is 

2, namely 2 + 7 + 1 + 2 = 12, but the sum of the digits of 12 is 3, not 4. Thus, 74³38 is not 

2,712. Indeed, a more careful calculation gives the correct answer of 2,812. 

Casting out 9s can also be used to check a sum of numbers against the total. For instance, to 

check that 75 + 236 = 305, replace 75 by its checksum, 3, and 236 by its checksum, 2. The 

sum of these two checksums is 5, which should be the checksum of 305. However, the 

checksum of 305 is 8, so there is a mistake in the addition. 

Remark 

The Welsh mathematician Jim Wiegold used to emphasize the importance of checking by his 

code of practice: Whenever he used a result he felt bound to check the proof of the result so as 

to ensure correctness of the previous result as well as his own. This is despite the fact that a 

referee has checked all articles printed. However, even Wiegold has not been able to carry out 

his code of practice always. The amount of checking is just too much in some cases. 

Two Quick Checks 

A very crude check of a product of two numbers is obtained by counting the number of digits 

in each factor and adding. Suppose the sum of these digits is S. Then the product should have 

either S or S - 1 digits. In §2 we claimed that 45³45 was 2025. Thus the product we have 

calculated has 4 digits as it should. Although this is a very crude check, it does bring to light 

errors we might otherwise miss. 

A similar but more accurate method is to use only single digits. We again take the example of 

the square of 45, which we calculated in §2. 

 (45)
2
 = 45³45, and this is approximately 50³40 =2000. We chose this approximation by 

increasing 45 to 50, i.e. a whole number of tens and then reducing the other factor 45 to 40, 

arguing that as we had increased one factor, we should compensate by reducing the other. Of 

course multiplying 50 by 40 is easy. The result 2000 is strikingly close to the result obtained 

in §2, that is, 2025. These two checks, casting out 9s and approximating, give further 

evidence that the method in §2 both works and probably there is no serious mistake in the 

calculation. 

§4 Powers of 10 

We have already explained in the meaning of 10
2
 as the product of 10 and itself, i.e. 100. 

Similarly 10
3
 is the product of three 10ôs, and so on. Thus 

10
2 
= 10 ×10= 100 

10
3
= 10×10×10 = 1,000 

10
4
= 10×10×10 ×10 = 10,000 

10
5
= 10×10 ×10×10×10 = 100,000 

10
6
= 10×10×10×10×10 ×10 = 1,000,000 

10
7
= 10×10×10×10×0×10×10 = 10,000,000 

and so on. These are called the powers of 10. A useful word is exponent: the exponent of 10
5 

is 5; that of
 
10

7
 is 7. Note that 10

5
 is 1 followed by five 0s, 10

7
 is 1 followed by seven 0s and 
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so on. It seems reasonable to define 10
1
 to be 1 followed by one 0, i.e. 10, and 10

0 
as 1 

followed by no 0s, i.e. 1. Thus10
1 
= 10 and 10

0 
= 1.  

 

Multiplying these powers of 10 is easy: one simply adds the exponents. Thus 10
7
×10

5 

= 10
7+5

 = 10
12

. 

 

You will notice that an advantage of this way of writing is that it is much easier to 

comprehend, for instance, 10
9
 rather than 1,000,000,000.  Even more important, this notation 

gives one a way of expressing very large numbers.  Problem 8 in §6 illustrates this. 

 

 

FIGURE 1. Archimedes (287BC - 212BC). One of the greatest mathematicians of all 

times. He had an alternative of the power of tens notation to denote large numbers 

which enabled him to calculate the grains of sand in the entire universe (as known 

then). 

A very useful method is to express a number as a product of a number lying strictly between 

10 and 1 and powers of 10. Thus we can express 887 as 8.87³10
2
. The number 64789 is 

expressible as 6.4789³10
4
. The exponents make it very easy to compare these numbers. 

Obviously the one with exponent 4 is very much bigger than the one with exponent 2. Also, if 

the numbers were written out in detail, it could be rather awkward to perform calculations 

with them. For example, to square 65,000, if we rewrite this as 65×10
3
, the answer, using our 

previous formula, is easily seen to be 4225×10
6
, which can also be expressed as 4.225×10

9
or, 

without exponents, 4,225,000,000. 

The advantage of this calculation is that it is so simple to do; it also gives us a very good idea 

of the powers of 10 that are in the answer. As such it is a useful test. With it we will certainly 

discover large errors. 

Example 

(995)
2
.  995 is approximately 1³10

3
, and so the square is approximately 

1³10
3
³1³10

3
 = 1³10

6
. If we look at the example in §2 we calculated (995)

2
 to be 990025, 

which is equal to 9.90025³10
5. 

This is very close to 10
6
. 
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Negative powers of 10 

Positive powers of 10 are useful for large numbers. Negative powers are used for small 

numbers. For instance, 10
-5

 means 1 divided by 10
5
, i.e. 1/100,000. In general the same rule 

applies that multiplying by powers of 10, whether positive or negative or mixed, we simply 

add the exponents. Thus 

10
-5 ³10

-15³10
-5

= 10
-25

.
 

Rounding 

The number 3.467 can be rounded to 2 decimal places by changing it to 3.47, i.e. we drop the 

last digit and if it is 5 or larger add 1 to the second decimal. If the last digit is less than 5, we 

simply drop it and leave the other digits unchanged. 

Examples 

To three decimal places we replace 18.8244 by 18.824, to 4 decimal places replace 5.67185 

by 5.6719, to one decimal place replace 299.95 by 300.0. In this last example, we drop the 5 

and add .1 to 299.9 thus getting 300.0. 

In Science and Engineering most numbers are not exact, being the result of measurement, 

which is always subject to some inaccuracy. In the scientific notation that we have discussed 

above, the convention is that all digits given are correct, with the possible exception of the last 

digit, which could be 1 larger if the number has been rounded up. Thus 5.678³10
8
 means that 

the number lies between 5.6775³10
8 
and

 
5.6784³10

8
. 

§5 Accuracy 

Taking 10 instead of 14 is an approximation. The error is 4/14, i.e. approximately 28%. So 

when we consider a product and approximate by taking the nearest single digit numbers we 

can incur large errors. When we take the product of two such numbers the errors compound. 

For instance, to calculate 14³23, if we approximate by 10³20 = 200, instead of the correct 

product of 322, the error is 122/322 i.e., an error of about 40%. The method of approximating 

by taking a single digit is subject to considerable errors. Often it is still useful to do so, but we 

recommend using two digit numbers to approximate, thus getting a much closer 

approximation. We recommend this because multiplying two digit numbers is relatively easy. 

In fact, if one uses the method advocated by Trachtenberg (described in Chapter 17) one can 

write down the answer in a few seconds. 

In working out an approximation multiplying two numbers, note that the error is 

approximately the sum of the percentage errors in each of the factors as explained in 2 of §6. 

In the example above, approximate 14³23 by 10³20, the percentage errors of the factors are 

28% and 13%, so the error in the product is approximately 41%. In the actual calculation we 

found an error of 40%. 

§6 Solved Problems 

1. Practicing squaring a number that ends in 5. Find the squares of 85, 75, 125. 

Solution: (85)
2
 : Drop the 5 to get 8, add 1 to what remains to get 9. Multiply 8 and 9 to 

get 72. Attach 25 to get the result of 7,225. 

(75)
2
 : Drop the 5 to get 7, add 1 to what remains to get 8. Multiply 7 and 8 to get 56. 

Attach 25 to get the result of 5,625. 
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(125)
2
 : Drop the 5 to get 12, add 1 to what remains to get 13. Multiply 12 and 13 to get 

156. Attach 25 to get the result of 15,625. 

2. Checking by casting out nines ï Find 82×36. Check by the method of casting out 

nines. 

Solution: 82³36 = 2952 by direct calculation. 

To check we sum the digits of the answer replacing 9 with a 0, getting 2 + 0 + 5 + 2 = 9 

which we replace by 0. 

The check for 82 is 8 + 2 = 10, 1 + 0 = 1 on adding the digits of 10. The check for 36 is 3 

+ 6 = 9, which we replace by 0. 

We multiply the check digits for 82 and 36 to get 1³0 = 0, the same as the check digit for 

the answer.   So our check does not indicate an error. 

3. A quick check. Check problem 2 by checking the number of digits. 

Solution: We add the number of digits in each factor: 82, has two digits and 36 has two 

digits. The answer should have 4 or maybe 4 ï 1 = 3 digits. In fact the answer 2,952 has 4 

digits. 

5. Single digit check. Check problem 2 by replacing the product by one with single digit 

numbers. 

Solution: To calculate 82³36 we replace 82 by 80 and 36 by 40, the product is 3,200, 

which agrees reasonably well with 2,952. 

6. The scientific notation. In the scientific notation, what is the meaning of 7.5³10
4
? 

Solution: This means 7.5 times 10
4
, which is 1 followed by four 0s, i.e. 10,000. Furthermore 

the result lies between 7.45³10
4
 and 7.54³10

4
. 

 

7. Powers of 10. Use powers of 10 to multiply 2.5³10
4
 by 3.1³10

3
. 

2.5³3.1 = 7.75. 

10
4
 ³10

3
 = 10

7
 and so the product is 

7.75³10
7
 

 

8. Powers of 10 continued. Estimate the volume of a sphere with center the earth and 

extending to the moon.  (This example illustrates how easily the powers of ten notation 

can handle very large numbers. Indeed, without the powers of ten notation we could not 

even give an answer.) 

Solution: The volume of a sphere of radius r is 4p r
3
/3

. 
The moon is approximately 

1.6³10
6
 km. So the volume is 4p(1.6)

3 ³10
18

/3 = 17.157 ³ 10
18 

= 1.7157³ 10
19

 km
3
. 

9. Negative powers of 10. What is the meaning of 10
-3
? 

10
3
 means 1 followed by 3 zeros. 10

-3
 means 1/10

3
 = 1/1000 = 0.001. 
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10. Errors. Calculate the percentage error in the calculation in example 5 above. Does it 

agree with the assertion that the error is approximately the sum of the percentage 

errors? 

Solution: Replacing 82 by 80 gives a percentage error of (2/82)³100, i.e. approximately 

2%. Replacing 36 by 40 gives a percentage error of (4/36)³100. i.e. approximately 11%, 

the sum gives an error of approximately 13%. The actual error in the answer is less than 

(3/32)³100, i.e. approximately 10%. This agrees well with the calculated error. 

§7 Optional items 

The method of checking modulo 11 

1. There is another useful method of checking which we can explain by means of 

problem 2 of §6. This is 82³36. 

For this check, we add the first digit to the third digit and then add the result to the fifth digit 

and so on. We then add the second digit to the fourth digit and then add the result to the sixth 

digit and so on. We then subtract the second sum from the first to get our check number. 

For instance, 93,546 gets check number (6 + 5 + 9) ï (4 + 3) = 20 ï 7 = 13, which is then 

replaced by 3 ï 1 = 2. Sometimes the check number will be negative, for instance the check 

number of 82 is 2 ï 8 = - 6. In such a case, we add 11 to get a positive number. So 82 which 

had check number ï 6 has check number 11 ï 6 = 5. 

Our problem is 82³36. The first factor 82 has check number 5 as we have just explained. The 

other factor is 36, which has check number 6 ï3 = 3. We then multiply the check number of 

the first factor by the check number of the second factor to get 15, which is further replaced 

by 5 ï 1 = 4. In problem 2 the answer was 2,952, whose check number is (9 + 2) - (2+5) = 4, 

which agrees with our previous check digit. (See Chapter 15 §6 problem 2 for an explanation 

of why this method of checking works.) 

2. Demonstration of summation of percentage errors in a product. 

The percentage error in a product is approximately the sum of the percentage errors in 

each approximation. 

Solution; Before giving the explanation we note that the product of two small numbers is 

very much smaller than each of the individual numbers. For instance, if we multiply .01 by 

.02, the result is .0002, which is considerably smaller than both .01 and .02. So the product of 

two small numbers can be neglected if we are looking for an approximate result. 

Suppose now that we are multiplying two numbers, n and m, by approximating to n by 

n + a and to m by m + b. Our approximate answer will then be (n + a) ³ (m + b). 

[As an example, say we are multiplying 2.9 by 4.8. Suppose we use n = 2.9 and a = .1, and m 

= 4.8 and b = .2. Thus instead of 2.9³4.8 we take 3³5.] 

The difference between our approximate answer and the correct answer, n³m, will be 

(n + a)³ (m + b) - n³m = nb + ma + ab, which is approximately nb + ma, if we assume that a 

and b are relatively small, and so ab can be neglected by the remark at the beginning of this 

solution. The percentages of error in the approximations are (a/n) ³100 and (b/m) ³100 and, 

for the product, (nb + ma)/(nm) ³100. Finally, (nb + ma)/(nm) ³100 = b/m³100 + a/n³100. 

That is, the sum of the percentage errors of each of the factors, which is what we were to 

prove. 
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[If we repeat the above argument using the example we have chosen of 2.9³4.8, we have the 

difference between our approximate answer of 3³4 = 12 and the correct answer 2.9³4.8 will 

be (2.9 + .1) ³(4.8 + .2) ï 2.9³4.8 = 2.9³.2 + 4.8³.1 + .1³.2, which is approximately 2.9³.2 

+ 4.8³.1 since .1³.2 can be neglected. The percentages of error in the approximations of the 

factors are (.1/2.9)³100 and (.2/4.8)³100 and, for the product, {2.9³.2+4.8³.1 

2.9³4.8})³100 = (.2/4.8)³100 + (.1/2.9)³100, that is the sum of the percentage errors in 

each of the factors] 

3. Prove the quick method of squaring a number ending in 5 described in §2. 

Note that 95 = 9³10 + 5. In general a number ending in 5 can be written 10n + 5. Thus 

(10n + 5)
2
 = (10n + 5) (10n + 5) = 100n

2
 + 50n + 50n + 25 = 100(n

2
 + n) + 25. 

Since (n
2
 + n) = n(n + 1), the result follows. 
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Chapter 3 

MATHEMATICS AND COMPUTING 

 
 

This chapter is quite diffent from the others.  Whereas most of what appears in the rest of the 

book will be correct in thousands of years, much of what appears here, and especially the 

specifications, will be out of date probably before the book is published. 

§1 Bytes and bits 
Computersô memories are specified in bytes.  A byte corresponds to a character, such as a 

number or a letter of the alphabet or a punctuation mark.  The computer has a very limited 

vocabulary.  It understands only 0 and 1.  This is called a bit.  A byte consists of 8 bits.     

 

The computer has two types of memory.  The first is called RAM memory, and stands for 

random access memory.  It is the memory that the computer has for calculating and thinking, 

and corresponds to what we would normally use a sheet of paper for our calculations, which 

can then be thrown away.  This, for instance, we would normally use for recording a 

telephone number when somebody phones.  Later on we would transfer this to a telephone 

list, which is kept.  This corresponds to the memory on the hard disc of the computer. 

 

The byte is a small unit, and we have a number of other units to describe the memory capacity 

of a computer.    A kilobyte is 1000 bytes, a megabyte is a million bytes and a gigabyte is one 

thousand million bytes.  One thousand million is a billion and so a gigabyte is a billion bytes.    

It is not unusual for a computer to have  200 gigabytes of memory, i.e. it has more characters 

that it can remember than there are people in  the world (6 billion.)  With such a memory, it 

can remember 5 words describing each person in the world. 

 

§2 Turing Machines 

The Turing Machine is a theoretical model of the computer.  It is a very simple device, but 

then the computer is also a very simple device.  A Turing Machine has a infinite strip of 

paper.  It can make a marköon the paper or delete a mark and then move one position to the 
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left or one position to the right.  It can also be in a number of states, and depending on its 

state, it will do other things.   

 

Perhaps an example of how the Turing Machine adds will help.  A Turing Machine to add has 

two states, State A and State B.   

 

Initially it is given two numbers to add.  The two numbers are indicated by a number of 

marks.  There is a space in between them.  For instance, 5 + 3 will appear on the infinite strip 

as follows: 

 

ööööö ööö.   

 

The tape is read at the beginning by the machine in state A.  If in this state the machine sees a 

mark, it moves one space to the right.  It then reads the next item and if it is a mark it moves 

one step to the right again.  If it sees a blank it  moves one step to the right. It now changes to 

state B. If it sees a mark it moves one step to the left and makes a mark and then moves one 

step to the right and erases the mark.  It then moves one step to the right and continues.  If it 

sees a blank it simply stops.  The result is of course that all the marks are now all together and 

there are now eight of them, and so the Turing Machine has added the two numbers to get the 

total of eight. 

 

§3 Speed of operation 

From this description of the Turing Machine you get the impression that the computer is not 

very smart. Of course the Turing machine is only a theoretical model of the computr, a nd the 

computer works completely differently.   

 

Perhaps a more usful way to think of the computr, is that it is a device  that carries out th4e 

instructions of algorithms.  An algorithm is a step by step procedure.  At each step the 

algorithm tells one exactly what one has to do.  As an example we will consider the algorithm 

of finding the highest common factor of two numbers.  This is the largest number which 

divides both numbers exactly.  For instance, the highest common factor of 54 and 30 is 6.  

This is easy to see by dividing the numbers mentally.  A simple algorithm for doing this is as 

follows: 

 

We prepare two columns.  In the first row we write 54 in the first column and in the second 

we write 30. If the two numbers are the same the highest common factor is that common 

number.   In this case of course 30 is the least number, and we write it in the same column in 

the new row.  We subtract it from other number and place that in the same row under itself.  

We continue in this way till we get two equal numbers in a row.  This the highest common 

factor.  

 

Thus we have in this example 
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54         30  (Begin with the two initial numbers.) 

24          30  (30 unchanged and subtracted from 54.) 

24            6  (24 unchanged and subtracted from 30.) 

18            6  (6  unchanged and subtracted from 24.)   

12            6  (6 unchanged and subtracted from 18.) 

6              6  (6 unchanged and subtracted from 12.) 

As the two numbers are now the same, that is the highest common factor. 

As the computer is limited to carrying out such laborious processes this agaam suggests that it 

is rather stupid.  How come then it is so effective.?   

The answer lies in its ability to do each step incredibly fast.  Typically performance is 

measured in giga cycles per second, i.e. a billion times per second.  The word hertz after a 

famous physicist means cycles per second.  Thus 2 gigahertz is a typical speed for computers.   

The electricity in your house has a frequency of 50 or 60 hertz, radio waves are measured in 

kilocycles or at most megacycles. Per second.  The more hertz the faster the computer can do 

calculations.  So the computer is outstandingly clever because it does everything incredibly 

fast, even though it uses quite laborious methods.  é.. 

§4 Will the computer replace the mathematician? 

This has already occurred in some respects.   

Many people do not calculate the sum of or the product of two numbers, they use a pocket 

calculatior.  At most shops nowadays the assistanct taking your money does not need to 

calculate how much change to give you.  This is done automatically by the cash register.  Nor 

does an accountant nowadays need to be quick and accurate at adding numbres, he or she 

simply uses a computing program which does all the adding automatically.  Similarly the 

payment clerk, does not need to calculate your tax, it is all done automatically by the 

computer program.   

At University the first two parts of mathematics that are usually studied are Calculus and 

Linaear Algebra.   There are many computer programs that can do all that a clever student can 

do and more quickly and more accurately.  Although students still study these two subjects, it 

is surely only a matter of time before the subjects will be modified and at the very least, much 

of the techniques and methods will prove to be redundant and will not be studied.  How far 

this will go is hard to say.  Att the moment, most mathematics lecturers have a built in 

tendency to teach the subject very much in the old way.  But time will certainly change this 

and we can expect the computer to be used much more 

 

Just how much we can leave to the computer is hard to say.  We must avoid the danger that 

after a while there will be nobody who really understands the principles and we simply rely 

on the computer as an oracle.  And of course there are going to be times when the computer is 

going to be wrong.  Either because there are bugs in the program (problems and conflicts that 

arise which nobody thought of at the time) and also because conditions may have changed and 

so are no longer applicable.   
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In this book we stick mainly to our own understanding, and do not rely on authority, 

whether it be computers or famous professors.   
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Chapter 4 
 

FERMI PROBLEMS 

To scribble a few figures on the back of an envelope and yet get a reasonable 

approximation to something whose value you have no idea about, sounds a bit 

like cheating. It isnôt. Itôs a Fermi calculation. 

The Nobel Prize winner Enrico Fermi was a physicist who had great skill in estimating with 

little information. For instance, as a standard question he would ask his students, òHow many 

piano tuners are there in Chicago?ò With ingenuity one could find an estimate. How good the 

estimate is depends on the skill of the estimator. At the first ever explosion of a nuclear bomb 

Fermi noted how a piece of paper had been blown away by the blast, which was many miles 

away, and produced very quickly an estimate of the yield. His result was remarkably accurate. 

As another example of his methods, knowing the distance between Los Angeles and New 

York and the time difference, we will be able to estimate the circumference of the earth. 

In this chapter we will solve some Fermi-type problems. The idea is to get numerical values 

with very little information, and, of course, with results that are only rough approximations, 

For instance, one of our calculations will be an estimate for the weight of the earth. After our 

calculation we will be able to replace a vague remark that ñthe earth weighs a great dealò with 

the remark that the earth weighs approximately so many kilograms. This is relatively easy to 

check against published figures, and it will turn out that our rough calculation is out by a 

factor of 2. But this is much more precise than the original estimate that ñthe earth weighs a 

great dealò. 
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FIGURE 1 Enrico Fermi (1901-1954). Nobel Prize in Physics 1938 

Most of the examples below can also be checked in reference books, which enables us to see 

the advantages and the limitations of our calculations. But there are many cases where there is 

no reliable answer, and then the Fermi calculations give us guidance. 

To simplify the calculations, it will be useful to express numbers using powers of 10. We 

remind the reader of these powers, which were discussed in Chapter 2. By 10
3
 we mean 10 

multiplied by itself three times, or 1000. Generally, for any whole number x, 10
x
 means ten 

multiplied by itself x times. For example, 10
7 

means 1 followed by seven 0s, i.e. 10,000,000, 

and 3.8³ 10
7
 means 3.8 multiplied by 10,000,000, i.e., 38,000,000. 

The x in 10
x
 is called an exponent. As we explained previously when we multiply powers of 

10 we simply add the exponents, and if we divide by a power of 10, we subtract the 

exponents, e.g. 10
4
³10

5
 = 10

9
, and 10

6
 divided by 10

2
 is 10

(6 - 2)
 = 10

4
. 

§1 Weight of a baby 

Assuming that a man of 2 meters height weighs 100 kilograms, how much should a baby 50 

cm high weigh? Since the baby is a fourth of the height of the man, as a first guess one might 

divide 100 kilos by 4 to get 25 kilos. This is clearly too naïve, since weight depends on 

volume, and the baby is not only shorter, it is also not as wide. Moreover, among many other 

considerations, skin and bones are less dense. To get a better approximation think of two solid 

rectangular boxes, one of which is one-fourth the length, width and breadth of the other. The 

volume of the smaller one will be (1/4)
3
 = 1/64th of the larger. If the same reasoning applies 

to the baby, its weight should be 100/64, or approximately 1½ kilos. 

This answer shows both the weaknesses and strengths of this type of calculation. Everybody 

knows that a 50 cm baby is likely to weigh about 3 kilograms: twice as much as our estimate 

of 1½ kilos. However, with very little effort we have obtained a rough value, which is 

somewhere near the right answer. Clearly we should not expect this simple approach to give 

us an accurate result. Nevertheless, it has provided us with a rough idea of the result. 

There is another possible approximation, which is based on the body mass index. This is a 

way of checking on being underweight or overweight. The body mass index is obtained by 

dividing the weight in kilograms by the square of the height. 
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For instance, consider the man who weighs 100 kilos and has a height of 2 meters. The square 

of his height is 4 and so the body mass index is his weight divided by 4, that is 25. And 

indeed, 25 is given empirically as the maximum body mass index for a person not to be 

overweight. 

If we use this method for the baby, with its weight denoted by w, and its length 0.5 m, then, 

since (0.5)
2
 = 0.25, the body mass index for the baby is w/0.25. Assuming that w/0.25 = 25, 

the maximum for the ideal body mass index for a man, the babyôs weight must be 6 

kilograms. Again, we are some distance from a reasonable result. 

One can regard these rough calculations as, at least, giving us some quantitative information. 

This might be sufficient for our needs, but it will often be just the first step in trying to get a 

useful result. 

§2 Number of people in the world 

There are something like 200 countries in the world, and Great Britain has some 60 million 

people, i.e. 6³10
7
 people. There are other countries much larger, like the USA, Russia, China, 

India, but many much smaller Assuming that all on average, 200 countries have half the 

population of Great Britain, this would make the total population of the world about 

200³3³10
7
 = 6³10

9
. This very crude calculation has given the correct result. 

§3 Circumference of the earth 

Enrico Fermi came up with this clever way to deduce the circumference of the earth. 

The distance from New York to Los Angeles is approximately 5,000 kilometers, and the 

difference in time is 3 hours. Since the earth is divided into 24 time zones, the distance from 

New York to Los Angeles corresponds to 1/8 the circumference of the earth. Hence, his 

estimate for the circumference of the earth is 8³5000 = 40,000 km. The equatorial 

circumference is in fact 40,074 km. Note that the circumference varies as the earth is not a 

perfect sphere. 

Fermiôs argument is very much the same as that used by the Greek astronomer, Eratosthenes, 

about 240 B.C., who chose Aswan and Alexandria in Egypt instead of New York and Los 

Angeles, and came to a result of a little over 40,000 km. His method was based on the relative 

position of the sun at noon in the two places. 

§4 Maximum number of inhabitants on the earth 

The radius of the earth, r, is about 6³10
3
 km so the surface area of the earth is given 

approximately by the formula 4ˊr
2
 (the surface area of a sphere of radius ) i.e. 

4p ³(36 ³10
6
) = 452³10

6
 km = 4.52³10

8
 km

2
. However, since 70% of the earthôs surface is 

water, this leaves 30% of the area on dry land, that is, approximately 1.5³10
8
³10

6
 m

2
.  

Then if we allow 100 m
2
 of space for each person, this comes to a maximum of 1.5³10

12
 

people. It is interesting to compare this figure with the actual number of people inhabiting the 

earth today, something like 6³10
9
. 

§5 Viability of running a shop 

Suppose you wish to earn a net income of £20,000 per year. Working a whole year with 40 

hours a week, and 50 weeks gives 2,000 hours. This means that you need to make at least £10 
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per hour. However, it would be foolish to regard that as sufficient, because there are always 

extra expenses. So we assume that what is needed is £20 per hour, just asking double since we 

do not have any better idea. Assuming that the profit margin is one third, we will need to sell 

some £60 per hour, or £5 per five minutes. This seems rather optimistic so we conclude that 

the profit margin must be higher, say 50%. With this profit margin you can reduce your 

average hourly sales to £40, or £3.50 per five minutes. 

Of course, thereôs a trade-off here, since increasing your prices may result in fewer customers. 

§6 General Comments on Fermi calculations 

It would be foolish to use these rough calculations as being correct conclusions. But it is 

remarkable how often they give one quite a good idea. 

It is a sobering thought that often the figures that are quoted by the authorities have been 

made by similar calculations. Your own calculations can give you some reason to agree or 

disagree. 

Indeed, in general when you are given some official number, you should always add in your 

mind plus or minus 20%. We suggest this margin of error because we know that usually it is 

not possible to give a very exact number. There are always errors. It is also not uncommon for 

people to err in a direction that makes them look better. 

It is important to regard a Fermi calculation as the first stage in a more detailed investigation. 

Also, of course, the more you know about a subject the more accurate you can make your 

Fermi calculation.   

§7 Solved problems 

1. Our town has 120,000 inhabitants. What are the numbers of births and deaths? 

Solution: Since the town does not seem to be growing or declining, to a first 

approximation the numbers of births and deaths should be about the same. If the average 

life span is 70, for our rough calculation we may assume that, on average, an inhabitant 

will die at age 70. Thus the number of deaths should be 120,000 divided by 70, i.e. about 

1,700 per year. 

2. How many hairdressers in our town of 120,000 people? 

Solution: Most men need a haircut once a month. Most of the hairdressers take about 

quarter of an hour per haircut, presumably more for women, but then women have a 

haircut less frequently. 

On average, in a town of 120,000 people each month there will be about 100,000 people 

needing a haircut. Divide by 20 to get the number per day, 5,000. Each hairdresser can do 

20 haircuts a day. Divide by 20 to get 250 hairdressers. This can be checked by using the 

yellow pages to count the number of hairdressers. In our phone book the total is 120. So 

the calculation is wrong by a factor of 2. This is not bad for a rough calculation, but in any 

case, one thing we did not take into account is that many hairdresser salons employ more 

than one hairdresser. If we assume the average is 2, then the rough calculation should have 

been improved by dividing by 2: 250 divided by 2 is 125 hairdresser salons. 
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3. Weight of a page of paper. 

Solution: Paper is measured at weight per square meter. Suppose our paper weighs 80g 

per square meter. If the size of a page is 210³297 mm, i.e. approximately 

0.2m³0.3m, then the area will be 0.06 square meters. Hence, the weight must be 80³0.06 

or approximately 5 g. As a check we use a scale and found the weight to be 4 g. 

4. Weight of the earth 

Solution: The volume of a sphere of radius r is (4pr
3)

/3. Since the radius of the earth is 

approximately 6,000km, and since 4p/3 is approximately 4, the volume is roughly 4³ (6³10
3
)
3 

= 4³216³10
9
, or 864³10

9
 km

3
. The weight of one cubic centimeter of water is 1 gram, so the 

weight of one cubic meter of water is 10
6
 grams, or 10

3
 kg, which means that one cubic 

kilometer weighs 10
12

 kilograms. 

If we guess that earth is four time as heavy as water, the weight of the earth must be 

approximately 864³10
9
³4³10

12
 kilograms, or 3456³10

21
 kg or 3.456³10

24
 kg. Checking on 

the internet we found a value of 5.9763³10 
24

 kg. for the weight of the earth. Our guess is out 

by a factor under 2, not too bad for a first approximation. 

5. Quick calculation of the tax burden. 

Solution: In a country with a tax rate of 20% and a value added or sales tax of 20%, for every 

income of 100 one has to pay 20 in tax. This leaves one with 80. A total purchase price of 80 

breaks down to 67 plus 13 value added tax. So when one purchases an item for 80 one has to 

pay value added tax of about 13. The person who receives the 67 has to pay 20% tax on that, 

which gives a further 13 tax to the government. Thus, the total tax so far paid on the original 

100 is 

20 + 13 + 13 = 45. 

6. Conservatives claim that reducing taxes will encourage sales, which, in turn, will 

result in more tax being collected despite the lower tax rate. How sound is the 

economics? 

Solution: To verify this imagine that there is a 5% tax reduction, say, from 20% to 15%. 

Suppose this results in everybody earning 15% more, a rather extravagant estimate. 

Previously, if somebody earned 100 he paid tax of 20. Now the same person earns 115 and 

pays tax at 15%, i.e. 17.2. This is lower than the original 20, and results in a net loss for the 

government. 

7. A person is selling a product at £100 with a profit of £50. He decides to hold a sale 

giving a 10% reduction. How many more of his product must he sell in order make the 

same profit as before? 

Solution: Since the sale price will be £90, his new profit will be £40, instead of £50. Thus, 

one needs to sell 25% more to get the same result as before. Of course selling 25% more is a 

lot more work, so unless many sales result from this maneuver, in the long run it will not be a 

good idea 

8 Three for the price of two. 
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Some stores offer three items for the price of two.  For instance, one is offered three books for 

the price of two..  In the following table, we calculate the profits. Take the example when the 

books are sold at a price of £10 each.  The profit will of course depend on what the books cost 

the  store.  We will consider two possibilities, assuming first that each book costs £5.  Then 

we consider the profit if each books costs £4.  

Thus if each book costs the store  £5, selling one at £10 gives a profit of £5.  Selling three for 

the price of two costs the store £15, and they sell them for £20.  This gives them a profit of 

£5.  The rest of the following table has been calculated in a similar way.  

 

Cost of book to the store Profit selling one book Profit 3 books for the price of 2 

£5 £5 £5 

£4 £6 £8 

  From the table we see that selling three for the price of two gives the same profit as selling 

just one book..  On the other hand, with a lower cost, of £4 for the store, three for the price of 

two gives a larger profit than selling simply one.  Thus for this method of selling to be 

profitable for the store, there must be a substantial mark-up. 

 

9. Pyramid selling. 

There is a type of selling which sounds good for all participants. The first person sells 

franchises to 10 subagents, and gets a percentage of their profits. Each agent then sells 

franchises to 10 subagents and also gets a percentage of their sales. And so on. This 

system is untenable. Why? 

Solution: Suppose we are dealing with a town of 100,000 people. Suppose there are 5 stages 

of agents and subagents. The very first in the chain has sold franchises to 10 subagents and 

each of these sells to10 more, making a total of 100 agents. Each of these 100 sells to 10 

more, making a total of 1,000. Each of these again sells to 10 making a total of 10,000 

participants. Each of these sells to 10 more, making a total of 100,000 at the fourth stage. At 

the fifth stage there would be 1,000,000 participants, and these are only the ones who have 

been appointed at the fifth stage, and do not even include all the others. In other words, after 5 

steps the whole system collapses because there are not sufficiently many people to participate. 

10. Estimate the lower of the two blood pressure readings for a person. 

Solution: The blood pressure is measured by two readings in mm (millimeters) of mercury. 

When you are standing upright the lower pressure must be sufficient to keep the blood in the 

brain, otherwise you would faint. The heart is roughly 50 cm from the top of the head, and so 

the pressure must be sufficient to support a 50 cm column of blood. If we make a rough guess 

that blood and water weigh the same, we would need to support a 50 cm column of water. 

However, since we are not always at the minimum requirement, let us add 50% to get 75 cm 

of water. 

Blood pressure is measured not in the lengths of water columns, but in the lengths of columns 

of mercury. To change from a column of water of 75 cm to a column of mercury divide by 
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13.9 to get about 5.4 cm, which is 54 mm. Doctors would say that this is too low, and a value 

of 70 or 80 would be more reasonable. 

11. Pension. How much must one save for a pension of T pounds per year? 

Solution: Suppose you want to have a pension of T pounds per year. Once one reaches the 

retirement age of 65, one has probably not much more than 15 years left of life. So one will 

need 15³T pounds in savings. Of course one will invest this sum, but the usual idea is to 

invest in very safe funds, which means that you can not expect a very high return, but 

hopefully enough to cover inflation and perhaps give you enough money for a few extra years 

if you live longer than 80. 

As a check we note that the annuity rate is about 6% to 7% which is also about 1/15. This 

means that insurance companies that provide annuities want a payment of 15³T to provide a 

payment of T pounds per year. 

12. Pension. What percentage of his salary should a person save for a satisfactory 

pension? 

Solution: If one receives a salary of S, in practice one hopes for a pension of S/2, which is 

regarded as satisfactory in England. Thus if we use the calculation in the preceding example, 

one should save a minimum of 15³S/2. Here one can afford to take greater risks and thus get a 

greater return on the money one saves. One can at a guess expect to get double or even three 

times the money one has saved because of a reasonable return. (See the following problem for 

an explanation of this.)  Letôs be cautious and say double.  Thus one needs to save 15³S/4. 

Assume that one works for 40 years. Thus each year one needs to save 15³S/160, i.e., about 

9% of salary. 

13. If one saves one pound per year for 40 years at 5% interest, what is the final sum? 

Solution: Note that 5% is a good average return, allowing for inflation and taxes. 

After the first year one has (1 + .05) pounds. One then puts in another 1 in savings, making a 

total of (1 + (1 + .05)) pounds. Since this accumulates interest at 5%, after another year we 

will have (1 + .05) + (1 + .05)
2 
pounds. One then adds an extra saving of 1 to get a total, after 

the second year, of 

1 + (1 + .05) + (1 + .05) 
2 
pounds. 

Continuing in the same way, after 40 years we will accumulate a total of 

1 + (1 + .05) + (1 + .05) 
2 
+ é+ (1 + .05)

40 
pounds. 

In order to calculate this sum, we replace (1 + .05) by the symbol r and thus the sum S we 

wish to calculate can be written as 

S = 1 + r + r
2
 + é + r

40
. 

Next, we multiply this by r we get 

rS = r + r
2
 + é + r

40 
+ r

41
. 

The differences between rS and S are the 1 in the expression for S and r
41

 in the expression 

for rS. Hence, if we subtract S from rS, the common terms cancel out and we see that 

rS ï S = (r ï 1)S = r
41

 ï 1. 

Hence, S = (r
41

 ï 1)/(r ï 1), and since r = 1.05, we see that 

S = (7.392-1)/(1.05-1) = 6.392/.05 = 127.84. 
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Without interest, we would of course have saved £1 each year for 40 years, i.e. £40. The 

interest has meant that we have something like 3 times the amount. 

14 A twenty year old receives a prize of one million pounds which he puts in a bank. 

Should he give up his job and ñlive happily ever afterò? 

Solution: Assume his present job pays £25,000 per year. With a million pounds one would 

expect to have a more luxurious life, say £50,000 per year. This would last 20 years. So he 

would be 40 when he had used up all his winnings. Clearly our 20 year old must think this 

over more carefully. He should certainly consider interests. Suppose he invests in an interest 

bearing account at 6% and that inflation is 3% and tax is 20% per annum. So he is receiving 

3% after allowing for inflation, and after tax, he is getting 2.4%.  Thus he has an income of 

£24,000 per annum.  It does not look as if he can afford to use £50,000 per annum. These 

calculations suggest that he seeks a financial adviser.        

15. In September 2005 a hurricane threatened to destroy Houston Texas. It was essential 

to leave Houston. If you have a car, how urgent is it to leave? 

Solution: To assess how urgent this was one could do the following rough calculation: 

Suppose that 1 million cars need to leave Houston. Not knowing Houston we have to guess.   

 It would be nice to have some basis for this guess, but as usual Fermi calculations are made 

on insufficient knowledge.  Inhabitants of Houston would do better.   

Suppose there are 5 ways of leaving the city and each road has 4 lanes.  Suppose that with the 

emergency, traffic moves slowly, say 20 km per hour.  Suppose we allow 20 m per car.  Then 

in an hour each lane will take 20000/20 = 1000 cars, so five four lane highways will take 

20000 cars per hour.,  A million cars will require about 50 hours, about 2 days.  With only 

two dayôs notice it would be sensible to leave as soon as possible.   .   

16. How long do you need in order to learn a foreign language? 

Solution: To manage in a foreign language, one needs say 3,000 words. One can learn say 6 

words in an hour. Hence one needs 500 hours. At ten hours a week, this is about 50 weeks, i.e. 

a year to get a useable knowledge of a language. 

17. Estimate the proportion of teachers in the population. 

Solution:  Assuming that ages in the population vary from 0 to 80 and that they are equally 

distributed.  In England one goes to school from the age of 5 to 17.  That means  the 

proportion of school children is 12/80 = .15. or 15%.    Assuming that each pupil is in a class 

of 30 others, and each such class needs a teacher, then we have that the percentage of teachers 

must be ½%. 
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Chapter 5 

PERCENTAGES 

 ½ could be a small or a large number. It depends what you compare it with. But ½% is small. That is 

the advantage of percentages. You know the importance of each item. 

§1 Definition and examples 

A simple but extremely valuable method of understanding numbers is to interpret them as 

percentages. This is especially so for figures one is not intimately concerned with. So, for 

instance, financial reports can be understood better by converting them to percentages. 

Similarly the budget for a country is more readily understood when expressed in terms of 

percentages. 

As an example: In a prison population of 6,000, 12 prisoners escaped one year. The 

opposition called for the resignation of the Justice Minister who is also responsible for 

prisons. In percentage terms this means that 0.2% of the prison population have escaped, and 

even if this occurs every year, it is quite a small percentage, and calling for the resignation of 

the Minister of Justice seems a bit overboard. 

Another example: The Rector of our university explained we were some ten thousands of 

pounds in the red. It was a tremendous figure. We were all shocked. So we asked the Rector 

what the deficit was as a percentage of the income. He had not thought of this but in the end 

said about 5%. This did not seem so serious a problem as it did at first. This is the value of 

percentages. They enable you to make sense of the figures. Nowadays with pocket calculators 

or spreadsheets they are easily calculated. 

Examples 

On holiday with a budget of £500 for a week a couple has estimated the following expenses. 

 

Bus, tube and train travel £70 

Food including restaurants  £210 

Museum and theatre charges  £150 

Miscellaneous  £70 

FIGURE 1. Holiday Money 
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In the next table we have expressed the expenses in terms of percentages of the budget. 

 

Bus, tube and train travel 14% 

Food including restaurants 42% 

Museum and theatre charges 30% 

Miscellaneous 14% 

FIGURE 2. Holiday money in percentages 

The percentages are calculated by dividing each expense by 500, the total cost in pounds for 

the week, and multiplying the result by 100. Thus bus, tube and train travel percentage are 

calculated by (70/500) ×100 = 14. The sum of all percentages must be 100%. It is easy to 

understand the significance of the figures, for instance, 75% is three quarters, etc. 

Percentages give a clearer way of seeing how the money is spent. For instance, these figures 

seem to indicate that it might be worthwhile spending less on food, by reducing the number of 

restaurant meals and eating more sandwiches prepared at home. This would leave more of the 

budget to spend on museums and theatre visits. 

Also useful to keep in mind is the connection between expenditures and percentages of the 

weekly and daily budgets in the following table. 

 

£ % per week % per day 

10 2 14 

50 10 70 

100 20 140 

500 100 700 

FIGURE 3. Holiday expenditure as percentages of the total available to spend 

Here again we have assumed a total weekly budget of £500. Spending £10 amounts to a 

percentage of the weekôs budget of 10/500Ĭ100, i.e. 2%. But the daily budget is 

£500/7=£71.43. So £10 as a percentage of the daily budget is about 13%. This makes it easier 

to judge whether it is worth spending that £10 on a particular day. 

In calculating a percentage one starts by deciding on the reference value. In this example we 

have chosen the total amount available for the week to be the reference. Choosing a different 

reference will result in different percentages and give different impressions, so it is important 

to consider carefully what one should use as a reference. In this case, we might have used the 

cost of the total holiday as a reference, i.e. the cost of travel, the cost of the hotel, and the cost 

of the food, museums, bus etc. In this case the idea was to help decide how £500 was to be 

used to enjoy the holiday, and so it seemed the right quantity to choose. In general, if the 

reference is denoted by R, the percentage for each item is calculated by the formula 

(Item/R)³100. 
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Caution: Do not try to average percentages.  For instance, if an investment goes up 100% one 

year, and then down by 50% the next year, the net result is not 25%  (100 ï 50)/2) the average 

of the two percentages, but 0%.  For if you have £100, a 100% increase gives you £200, and a 

50% decrease gives you £100, i.e. you are back where you started from.  .   

Ä2 A fictitious companyôs accounts 

In the following table we have listed a companyôs accounts. 

 

 This year Last year 

Sales £386,234 £320,234 

Advertising £50,000 £25.000 

Postage & telephone £35,874 £30,874 

Wages £140,000 £130,000 

Directors fees £70,000 £70,000 

Consultantôs fees £568 £368 

Accountantôs fees £1,865 £1,865 

Profit £87,927 £62,127 

Working capital £25,000 £25,000 

FIGURE 4. Accounts of a fictitious company 

We can re-express this in terms of percentages of the previous yearôs results as in the 

following table:  

 This year/last year % 

Sales 120 

Advertising 200 

Postage &telephone 116 

Wages 108 

Directors fees 100 

Consultantôs fees 154 

Accountantôs fees 100 

Profit 141 

Working capital 100 

FIGURE 5. Accounts re-expressed in percentages of previous year y 

Thus we see at a glance that sales are up by 20% and profits are up by 40% and advertising 

has doubled. The other items have shown relatively no change. 
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§3 Calculating percentages 

We can calculate the percentages quickly with the aid of a pocket calculator. Even quicker is 

to use a spreadsheet. If you are familiar with say Excel, then the following description may be 

sufficient, though usually handling computer programs is more easily done with help. To 

illustrate how this method works we will take the holiday budget described in Fig. 1. 

Begin by opening Excel. In cell D2 type ñPercentage with respect to R =ò. In cell H2 put in 

500, which is the reference figure we chose for the holiday budget. Type in the table 

beginning in cell C4 where you type in ñBus, tube and train travel.ò In cell H4 type 70, and 

continue to type in the rest of Fig.1. The table for the budget is now in cells C4 to C7 with the 

numbers in cells H4 to H7, 

 

Bus, tube and train travel  70 

Food including restaurants  210 

Museum and theatre charges  150 

Miscellaneous  70 

FIGURE 6. Example used to illustrate use of Excel for calculating percentage 

In cell I3 type ñ%ò. In cell I4 type = H4/$H$2*100 and press return. This calculates the 

percentage that 70 is of the reference you have placed in cell H2 (which in this case is 500). 

Go back to cell I4 and press ctrl and C at the same time. Then go down to the next cell I5 and 

press ctrl and v at the same time. You then go to the next row down to cell I6 and press ctrl 

and v at the same time. You go on doing this till you have covered the whole column. What 

Excel does is to copy your instruction of how to work out a percentage to each of the cells. It 

changes the H4 successively to H5, H6 and H7 as you go down the column, but the H2 which 

is the reference remains unchanged because Excel interprets the $ sign to mean leave this 

unchanged. 

Thus, you will get the percentages in this way. If you should decide to change the reference R, 

go back to cell H2 and change it accordingly. 

§4 Examples of judging figures in the news 

It is very difficult to comprehend large numbers, so it is particularly useful to use percentages 

to describe them. The problem is: what percentage of what? The following examples give 

ways of understanding the significance of the numbers. 

Example: In the Swedish news two items were mentioned. The first was that there would be 

an extra amount of one million crowns to assist further employment. The other was that 2,300 

million crowns was the estimate of how much money was spent on illegal drugs per year. 

Since a reasonable salary in Sweden is a quarter of a million crowns per year, the million 

crowns correspond to the wages of 4 people in a year. We can see immediately that the 

million crowns is not worthwhile bothering about. It canôt make much difference to the 

overall job situation. 

The second figure, of 2,300 million crowns should be considered in relationship to the 

population. Since the population of Sweden is 9 million or roughly 10,000,000, or 10
7
, this 
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means that on average 2.3×10
2
 crowns are spent on illegal drugs by each person. Of course, 

only a small part of the total population can be taking drugs, so as a rough guess we can start 

by excluding half the people, those between the ages of 0 and 20 and those from 60 to 80. Of 

those remaining, at a rough guess, suppose a quarter take drugs. This means that these people 

are spending 2,000 crowns each per year. This is a considerable sum of money and so the 

drug consumption is significant. 

§5 Keep an eye on the total figures 

Occasionally percentages may deceive. Suppose for argument that we have a study of 2,000 

people, half of whom drank water with meals, and half of whom did not. Suppose in the first 

group there were 3 cases of cancer, and in the other group there were two cases of cancer. 

Then we could claim: 

ñIn a study of 2,000 people, those who drank water with meals had 50% more 

cancers than those who did not drink water with their meals.ò 

Strictly speaking the statement is correct, but totally misleading, in that the number of cases is 

not sufficient to make a sensible conclusion. 

§6 Abortions 

The problem of allowing legal abortions is one of considerable importance. There are a 

number of different views, the most usual being 

1. Abortion is killing and killing is not allowed and so abortion should be illegal. 

2. While the foetus is inside the woman, it is really her right to decide what is to be done, 

and so abortion is acceptable. 

3. Contraceptive and abortion advice encourages sexual intercourse and so should be 

banned. 

4. In view of the need to avoid abortion; sexual and contraceptive advice should be freely 

available. 

We do not wish to take sides but simply wish to point out the urgency of the problem. In 

Sweden the number of abortions per year is 30,000. Assuming that the ages of most people in 

the risk zone for needing an abortion are between 15 to 25, i.e. a ten-year span. If one argues 

that the population goes up to 80 that means that is roughly 1/8 of the population. Since 

Sweden has a population of 9 million, there are approximately one million people in that 

range and half of them are women. That means that one twentieth or about 5% of the women 

population per year are affected, a very large percentage. 

§7 Compound increases 

If you look back at prices and wages over say the last twenty years it is striking how much 

they have risen. This may be a consequence of the fact that we always think of increases in 

percentages per year. We expect our salaries to increase by a certain percentage each year. 

Similarly we accept with resignation but as being at least reasonable, an increase of say 5% 

each year in costs. However these costs are compounded, and occurring year after year they 

become large. For instance an increase of 5% per annum becomes a doubling in 14 or 15 

years. Is it possible that the very concept of a percentage increase per year is the reason for the 

huge increases in costs and salaries? 
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§8 Worked examples 

1. Your salary increases from £30,000 to £35,000. What is the percentage increase? 

Solution: 

The percentage increase is (5,000/30,000)×100 = 16.6%. 

2. Your salary decreases from £30,000 to £25,000. What is the percentage decrease? 

Solution 

The percentage decrease is (5,000/30,000)×100 = 16.6%. 

3. Your salary of £30,000 increases by 5%. What is your new salary? 

Solution: 

The increase is ((5/100)×30,000 = £1,500. 

4. Your salary increases by 10% one year, only to fall by 10% the following year. Are 

you back to where you started? 

Solution: For each £100 you received before the increase, you now receive £110. The 

decrease of 10% means that you now receive £99, so you are not back to where you 

started. 

5. Your salary goes up 10% for two consecutive years. Is this the same as a 20% 

increase? 

Solution: £100 increases to £110, which in turn increases to £121. Thus your salary after 

two increases of 10% is greater than after a single increase of 20%. 

6. Using Fig. 4 of §2 calculate the percentages of expenditures with respect to sales for 

this year. 

Solution: 

  Percentages with respect to Sales 

Sales 100 

Advertising 13 

Postage & telephone 9 

Wages 36 

Director´s fees 18 

Consultantôs fees 0.1 

Accountantôs fees 0.48 

Profit 23 

Working capital 6 

FIGURE 7. Calculating the percentages in Figure 4. 

 

7. Estimating a percentage helps thinking.   

In the Swedish election held in September 2006 an alliance of conservative parties went to the 

polls with the promise of reducing unemployment.  They had a number of measures, which 

included making it cheaper for employers to employ a long time unemployed, but they were 



 

40 (153) 

40 

40 

also going to reduce unemployment benefits.  Was it smart for the unemployed to vote for this 

alliance?  

Solution:  Probably not.  For one must always ask by how much could the new government 

reduce unemployment.  It wonôt be 100% and a reasonable guess would be 10% because on 

the whole it is difficult to make a big change in a society.  This means that 10% of the 

unemployed would get a job but that the other 90% would have lower benefits.   
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Chapter 6 

MEASUREMENT SENSE OR DIMENSIONAL 

ANALYSIS 

If the units are right, the formula is often right. 

This chapter is about length, time, force, work and power, fundamental physical concepts, 

which we will discuss informally to provide an intuitive feel for these concepts. Kilometres, 

kilograms, watts, horsepower, seconds: these are the substance of our discussion. 

In the early 1900s, the advent of mass production required precise measurement. In the 

beginning of the motor industry each part was handcrafted to each car, but with the 

introduction of mass production methods it became important to build parts which were so 

standard that they would fit any unit on the production line. Precision measurements and, 

consequently, accurate units, became imperative. 

The international system of units, normally denoted by SI (short for Système International), is 

most common, although the Imperial system is popular in America and Great Britain. We will 

concentrate almost exclusively on the SI system. 

§1 Length 

Since some measurements are very small and others very large, it is convenient to express 

these in terms of powers of 10, which we will now define. The convention is that 10, stands 

for 10 multiplied by itself n times if n is a positive number while 10
-n

 is 1/10
n
. For example, 

5X10
3
 = 5000, while 5X10

-3
 = 0.005. This has the added advantage that calculations 

involving products become easier, since 10
m
×10

n
 = 10

m+n
, for both positive or negative values 

of m and n. [These powers of 10 have also been discussed in Chapter 2, Section 4.] 

The standard unit of length is the meter, abbreviated by m. Originally it was defined as one 

ten thousandth of the distance from the equator to the North Pole. Later a special rod was kept 

in Paris to be the standard for the meter. The present method involves using light to define the 

standard, but the technical details need not concern us here. All we need to know is that there 

is a system that ensures an accurate and uniform definition. Several prefixes are standard for 

SI units. We use kilo-, for ñthousandò; centi-, for ñhundredthò; milli- for ñthousandthò. For 

example, a kilometer is a thousand meters. 

A centimeter (cm) is one hundredth of a meter, that is, 1 cm = 10
-2 

m and 1 m = 10
2
 cm, To 

have a reasonable understanding of the units of length, the width of a hand is about 10 cm, a 

meter is the measurement from the ground to your belly button, and the length of a small 
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European car is about 4 meters. A three-story block of flats is about 10 meters high, which is 

also tree height. Also, while 100 meters is a short stroll, 100 meters vertically is extremely 

high, the height of a 30-story skyscraper. 

Turning to measuring the smallest of distances, such as the atom, we need another unit called 

the angstrom. An angstrom is 10
-8
 cm., which is about the width of an atom. The smallest 

distance that can be seen in an electron microscope is three-fifths of an angstrom. 

The following table lists a few other approximations. 

 

Finger width  2 cm 

Width of thumb  2.5 cm 

Height of step in a flight of stairs 16 cm 

Length of a foot, or height of a head  25 cm 

From the foot till the knee  50 cm  

Width of kitchen units  60 cm 

Foot to navel 1 m 

Tall man or height of door 2 m 

Length of small car 4 m 

One story of a block of flats 3 m 

Height of airplane flight 5 ï 12 km 

Height of TV satellite 36,000 km 

§2 Mass 

The SI system has a standard unit of mass, the kilogram, abbreviated kg, which is a fixed 

body kept under careful conditions 

The standard mass is kept well protected and used only to make a very few secondary 

standards, which are themselves used to make further standards, and in this way the standard 

of mass, the kilogram, is uniform throughout the world. 

The gram ï written g - is the mass of a body one thousandth of the kilogram. To give some 

idea of masses we have the following examples: 

 

 Mass 

A4 sheet of paper 4 g 

Standard letter 20 g 

Slice of bread 40g 

An egg 60g 

Banana or apple 120 g 

Meal of two eggs, two slices of bread, and a potato 350 g 

A litre of milk 1 kg 

A packed suitcase 20 kg 

A man 70 kg 

A medium sized European car 800 kg 

Substituting for the unit as shown in the following example is a useful technique for changing 

from one unit to another. 
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Example: Changing units, milligrams to kilograms. Express 34 mg as kilograms. 

The first step is to convert mg to g: 

1000 mg = 1 g, so 1mg = 1/1000g = 10
-3

g. 

We simply take the mg in 34mg and replace it by ×10
-3

g. Thus 

34mg = 34 ×10
-3

g. 

The next step is to convert g to kg: 

1000g = 1 kg, so 1g = 1/1000 kg = 10
-3 

kg, or g = 10
-3 

kg. 

To continue, we replace the g by ×10
-3 

kg. Hence, 

34mg = 34 ×10
-3

g = 34 ×10
-3

 ×10
-3

kg = 34 ×10
-6

kg. 

Note that we have simplified 10
-3

 ×10
-3 

to 10
-6 

. 

§3 Time 

The SI unit of time is the second, and this is denoted by s. Originally this was defined to be 

the time for a pendulum of length one meter to swing from one extreme to the other. The 

modern measurement is based on the Cesium-133 atom, but we will not bother about the 

details in this book. 

ñOne thousand and oneò, ñone thousand and twoò, etc. spoken deliberately measures time in 

seconds. The number of heart beats is about 70 per minute, so that one heart beat is about one 

second. Counting fast from one to ten lasts about 2½ seconds. 

We denote hours by the symbol h. The following table lists some time markers. 

 

Hours worked in a year (40 hours/week) 2,000 

Hours in a year 8,760 

Time spanned by great grandfather, grandfather and father 100 years 

§4 Speed: 

Speed is defined as distance traveled divided by the time traveled. 

Speed = distance/time 

In symbols, the speed of an object traveling a distance d in time t is 

d/t. 

Example: Calculating speed 

A horse travels 56 kilometers in 3 hours. What is the speed of the horse? 

Solution 

Speed = distance/time = 56km/3 h = 18.67 km/h. Here is a table of speeds.  

Travel at 11 km/h 3 m/s 

Travel at 108 km/h 30 m/s 

Man running 100 meters in 10 seconds 36 km/h 

Speed of sound 340 m/s 

Speed of light 3 ×10
5
 km/s 



 

44 (153) 

44 

44 

For instance, if a man shouts out to you at a distance of 100 meters, the sound will take one 

third of a second to reach you. On the other hand, the light reflected from the man will take 

10
2
 times 1/3 ×10

-8
 seconds or 1/3 ×10

-6
 seconds to reach you. The sun is so far away that it 

takes 8 minutes for the light from the sun to reach the earth. 

Estimating the speed of sound 

Two people stand about 150 meters from one another. The first one blows a whistle, and starts 

his stopwatch. The other whistles back as soon as he hears the first one. When the first one 

hears the other whistle, he stops his stopwatch. Thus the sound has travelled 300 m, and if the 

time is about 1 second, the speed can be calculated as 300m/sec. 

Another method of estimating the speed of sound is in the spirit of Chapter 4, using Fermi 

calculations, in which we guess and estimate a rough value. 

We know that commercial aeroplanes fly at a speed of about 900km/h. This is less than the 

speed of sound, so this is a lower estimate for the speed of sound. Now 900km/h = 15km/ min 

= 250 m/s. So knowing the speed of commercial aircraft, we can estimate the speed of sound 

to be about 250m/s, which is roughly in agreement with the known value. 

Estimating the speed of light by satellite 

This is also a calculation in the spirit of Chapter 4. If you listen to a TV sending a report from 

a correspondent who is a considerable distance away so that the message comes via satellite, 

you will notice a pause between the question asked in the studio and the reply. This is 

partially due to the distance that the radio signal must travel. The radio signal travels at the 

speed of light. The satellite is normally in what is called a geostationary orbit, which is some 

40,000 km above the earth. The signal must therefore travel from the sender in your country 

to the satellite, and then travel from the satellite to the correspondent. His reply must also 

travel up to the satellite and from the satellite back to the studio. That is a total journey of 4 

×40,000 km or 160,000 km. By dividing this distance by the delay in replying one can get a 

rough estimate of the speed of light. In one program we viewed, there was a ½ seconds delay, 

which gives an estimate for the speed of light to be 320,000 km/s. 

Rohmer estimate of the speed of light 

In 1676 the Danish astronomer Rohmer gave an estimate for the speed of light. He had 

measured when the Jovian moon would cross the face of Jupiter, and found that this time 

varied depending on how far away Jupiter was from the earth. He suggested that the time 

difference was due to the time it took for the light to travel to the earth and in this way gave 

the estimate, 227,000 km/s. 

Some wind speeds 

60 km/h is a strong breeze, large branches in motion, umbrellas handled with difficulty, 

telegraph wires can be heard whistling. Wind at 70 km/h is called a severe gale, and will 

cause structural damage, such as chimney pots being displaced and slates removed. A wind 

speed of 100 km/h is a violent storm; when it reaches 118 km/h it is classified as a 

hurricane, thankfully not very often experienced. 

Examples of speed conversion 

To convert m/s to km/h we note that 1km = 1000m, so that 1 m = 10
-3
 km and 1 s = 1/3600 h. 

Substituting these values for m and s, we get 

1 m/s = 10
-3

 km/(1/3600) h = 10
-3

 X 3600 km/h = 3.6 km/h. 
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Converting from km/h to m/sec is a bit easier. Since 1km = 1000m and 1hr=3600s, we 

conclude that 1 km/h = 1000m/3600s = 5/18 m/s. 

§5 Acceleration 

Acceleration is defined as rate of change of speed. That is, if the speed at time t = t0 is s0, the 

acceleration necessary to achieve a speed of s1 at time t1 is defined to be 

(s1 - s0)/(t1 - t0). 

That is, the difference in speeds divided by the time. 

Example 1: Acceleration. 

A car running at 40km/h speeds up to 50 km/h in 2 minutes, i.e., 1/30 h.. The acceleration is 

given by (50 ï 40) km/h/ (1/30) h = 300 km/h/h. This is usually written 300 km /h
2
.  

Example 2: Acceleration. 

Calculate the acceleration of a sports car if it moves from 0 to 100km/h in 4 seconds. The 

change in speed from 0 to 100 is 100km/h = 1/36 km/s. Since this occurs in 4 seconds, the 

acceleration is 1/144 km/s
2
. In this example we chose to work in seconds, whereas in the 

previous example we worked in hours. Either way is acceptable, but since the SI units include 

the second as a basic unit, it is probably better to use seconds. 

 

FIGURE 1 Galileo Galilei (1564-1642). Introduced the modern scientific approach 

based on experiment or theory supported by experiment. Father of Mechanics the 

study of moving bodies, forces and gravitation. Also made magnificent discoveries 

in Astronomy. 

Acceleration due to gravity 

It is a remarkable fact that all bodies acted on by gravity fall to the earth at the same speed if 

air resistance is insignificant. Galileo (1564-1642) demonstrated this by dropping two grossly 

different sized cannon balls from the leaning tower of Pisa and observing when they struck 

the ground. The expert knowledge at that time was that the larger the mass the shorter the 
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time of impact. When Galileo tried the experiment he proved this was wrong, and showed that 

the difference perceived earlier was due to air resistance. 

One way in which to argue this logically is to consider a mass of 10 kg and regard it as being 

split into 10 masses of mass 1 kg each. Drop all ten one kg masses simultaneously and, of 

course, they will all fall to the ground in the same time. Two adjacent masses will not affect 

one another so if we glue all the masses together to form one 10 kg mass, they will still fall to 

the ground in the same time. 

You may prefer to argue this case using Newtonôs laws of motion, as given in Ä10 problem 3. 

Experiment reveals that the acceleration of any mass when wind resistance is disregarded is 

9.80 meters per second per second. 

§6 Force 

Force depends on two factors. You notice that a force is acting when a mass accelerates. The 

mass and the acceleration are both needed to define the force. It is defined by multiplying the 

mass by the acceleration. The SI unit of force is the Newton, which is the force needed to 

cause a mass of one kilogram to accelerate one meter per second per second. If you hold a 

mass of 100 grams in your hand, it is pulled to the earth with a force of approximately one 

Newton. This is because the acceleration, as we remarked above, is 9.80 meters per second 

per second, and so the force is 0.1 kg × 9.80 m/s
2
; that is 0.98 Newtons, or approximately one 

Newton. The symbol to denote a Newton is N. 

§ 7 Work and Power, Joules and Watts 

In this section we discuss the material in an intuitive way, and provide a more precise and 

detailed discussion in §10. 

Work depends on two factors. There is a force you are struggling against and a distance that 

you move through, and indeed, work is defined to be the product of the force and the distance. 

For instance, if you lift a suitcase a meter high from the ground the work is less than if you lift 

two suitcases a meter high, or lift one suitcase 2 meters high. How long you take to do this 

does not change the work done; a second for the job entails the same amount of work as 

taking an hour, just as if you travel from one point to another, you still have travelled the 

same distance, whether it takes a day or an hour. It is the speed which changes if you take 

more or less time, not the work. 

However, if you take the time into account, then instead of work you measure power. Power 

is the work divided by the time; so the shorter the time, the more the power. 

Power is measured in watts ï indicated by W. A kilowatt is a 1,000 W, and is denoted by kW. 

Example: Lifting a suitcase weighing 25 kilogram one meter high (i.e. up to your waist) in 

one second is a power of roughly 250 W. If you do the same work in one half a second, the 

power is 500 W. 

How exactly these ideas are defined and the values calculated appear in the optional material 

below in §10. Here the aim is to give an intuitive idea of these concepts. 

Thus, a person at rest is working at a rate of something like 30 W. A normal size electric light 

bulb works at a rate of 60 W, and an electric kettle works at a rate of about 1,000 W, i.e. a 

kilowatt. The power of a human being, i.e. the rate at which he can work, is approximately 90 

W. 
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During the steam age it was the custom to visualize the power of the new steam engines in 

comparison with horses. This led to the unit of a horsepower. One horsepower is the 

equivalent of 746 W. Actually this corresponds to an idealized horse, and the value is a little 

optimistic, in that working at the rate of one horsepower is more the rate of work of one and a 

half horses. 

The concept of horsepower gives one a graphic way of viewing power. When you boil a kettle 

of water in an electric kettle, the electricity is working at a rate that is more than that of a 

horse. A car driving fast at constant speed along a level road works at the rate of about 20 

horsepower. 

Cars can typically develop 100 horsepower. Super sports cars boast 350 horsepower and 

more. 

The typical electricity consumption in a modern flat means that we have roughly the 

equivalent of a horse working for us for ten hours every day or 80 man-hours of labour. In 

other words, we have the equivalent of 8 slaves working for us every day for ten hours. No 

wonder modern man is like a king of only a century ago. [See §9 problem 3 for the 

calculation.] 

Kilowatt hours:  A kilowatt hour is a measurement of work. It is the work done at a rate of 

one kilowatt for one hour. For example, a typical electric kettle boiling water non-stop for an 

hour performs one kilowatt hour of work. It is denoted by kWh, 

§8 Dimensional Analysis 

A useful technique for checking a physics formula, or even getting a suggestion as to what the 

formula should look like, is obtained by using the fundamental dimensions of length [L], time 

[T], and mass [M]. The square brackets are used to indicate that we are talking about 

dimensions. It is a fundamental law in Physics that in any equation the dimensions on the 

right-hand side of the equation must be equal to the dimensions on the left-hand side of the 

equation. 

Example 1 

Find the dimensions of area and volume. What are the dimensions of speed and acceleration? 

Solution: Area is calculated by multiplying length by breadth. Thus the dimension is [L]
2
. 

Volume is obtained by multiplying length by breadth by height with dimension [L]
3
. Speed is 

distance divided by time, giving us the dimension [L]/[T] or [L][T]
-1
. Acceleration is speed 

divided by time. Since the dimensions of speed, as we have just calculated, are [L][T]
-1
, for 

acceleration we must divide by time again, and the dimension must be [L][T]
-2 

Example 2 

Find the units of force and work. 

Solution: Force is defined to be the product of mass and acceleration. Acceleration has the 

units [L][T]
-2

, thus the units of force are [M][L][T]
-2

. Work is force, [M][L][T]
-2
, times 

distance, [L], so the units for work are [M][L]
2
[T]

-2
. 

Example 3 

A pendulum of length l is subject to gravity, which has acceleration g. Find the form of the 

formula for the period of the pendulum, that is, the time required for the pendulum to swing 

from its initial starting position back to its starting position. 
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Solution: It seems reasonable to assume that the period will be a constant times a power say a 

of the length, l, of the pendulum and the b-th power of the acceleration due to gravity, g. That 

is, T should have the form 

T = constant× l
a
g

b 
,
 

where the powers a and b are to be determined. The dimensions of g are the dimensions of 

acceleration, i.e. [L][T]
-2

, and the dimensions of l are [L]. Hence, the dimensions of the right-

hand side of the formula are [L]
a
[L]

b
[T]

-2b
 = [L]

a+b
[T]

-2b
 . These must match with the 

dimensions of the left-hand side, and since T has the units of [T], this means that [T] = 

[L]
a+b

[T]
-2b

. This will be possible only if -2b = 1, and a+b = 0, that is, b = - ½, and a = ½. 

Hence, the formula for the period must look like: 

T = constant × l
½
g

-½
. 

(Note that an exponent of ½ means the square root, and an exponent of - ½ means 1 divided 

by the square root.) In fact, the correct formula is 

T= 2pl
½
g

-½
 = 2pÕ(l/g). 

Of course, this analysis does not give an exact result for the constant, but it is remarkable how 

frequently dimensional analysis points towards the right formula. 

Example 4 

A body in free fall (i.e., subject only to gravity and with no wind resistance) has an 

acceleration g due to gravity. Find the units in a formula relating distance fallen, x, and time 

of fall, t. 

Solution: Assuming a formula of the form x = constant×g
a
t
b
, where g is the acceleration due 

to gravity, in terms of units this becomes 

[L] = [L]
a
[T]

-2a
[T]

b
. 

Since the left-hand side of the equation has [L] to the power 1, a must also be 1. On the left-

hand side [T] does not appear, but on the right-hand side we see that with a having the value 

1, we have [T]
b - 2

 so this entails that b = 2. The actual formula is 

x = ½ gt
2
. 

We now come to what is at once the most wonderful and the most terrible of all formulae in 

Physics, namely the formula from Einsteinôs paper on Relativity relating energy, E, mass, m, 

and the speed of light, c, in one formula: 

E = mc
2
, 

the product of the mass m and c
2
, which itself is the product of the speed of light by itself. 

Note that in Physics energy means the ability to do work, and the equation says that if the 

mass m were converted entirely into work, the amount of work would be given by the 

formula. Thus the units of energy are the same as the units of work. 
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FIGURE 2. Albert Einstein (1879-1955), whose theoretical discoveries 

contributed to the development of nuclear power and the nuclear bomb. 

It is the most wonderful equation because it explains so much. For instance, the sun, which is 

the source of all energy and light on the earth, gives out an enormous amount of energy. For a 

long time it was thought that this was the result of burning: the same sort of burning we have 

on Earth, where matter combines with oxygen. That meant that it was possible to estimate 

how much energy the sun had, but when the calculation was done, it was obvious that the sun 

should have burnt out long ago. Ordinary burning could not explain the energy, which the sun 

emitted and had emitted for so many years. Einsteinôs equation could. The energy of the sun 

came from the conversion of mass to energy. 

Einsteinôs equation also meant that we ourselves could convert matter into energy in our 

nuclear reactors, which has turned out to be a mixed blessing, with plenty of energy but with  

awful dangers. Einsteinôs theory has also led to nuclear weapons with the ability to destroy 

our civilisation completely. 

Example 5: Check that the dimensions on both sides of Einsteinôs equation match. 

Solution: The dimensions of E the left-hand side of the equation are those of work, which we 

found out in Example 2 immediately above, were [M][L]
2
[T]

-2
. The dimensions of the RHS 

are those of [M] multiplied by the dimensions of velocity squared, i.e.[L]
2
[T]

-2, 
Hence the 

dimensions on both sides of the equation are the same. 

§9 Solved problems 

1. What is the acceleration in going from 0 to 100 km/h in 10 seconds? 

Solution. The acceleration is given by difference in speed divided by time. We need to use 

the same unit of time. 10 seconds is 1/360 of an hour.  The difference in speed is 100. So the 

acceleration is 

100/(1/360) = 3.6X10
4
 km h

-2
. 
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2. In a recent Winter Olympics the difference in time between the first and second places 

in the womenôs skeleton slide was 0.65 seconds. Assuming that the final speed attained in 

the event was 120 km/h, what was the distance in meters between the two at the finish? 

Solution. 120km/h = 120 ×1000 /3600 m /s = 33.33 m/sec. Hence, 0.65 seconds corresponds 

to 

0.65 × 33.33 m = 21.66 m. 

3. Assuming that your household uses 2,500 kWh per year, what is the average daily 

consumption? What is the equivalent in horses per day? 

Solution. There are 365 days in a year, so the average daily consumption is 2500/365 = 6.8 

kWh. One horsepower is 746 W. So it would require roughly 9 to 10 horses to work at the rate 

of 6.8 kW for an hour. So 9 or 10 horses working for an hour, or one horse working for 9 or 

10 hours, will give about 6.8 kWh. In terms of manpower, or slave power, this means we 

would need 8 slaves working each day for each household for 10 hours, since a man can work 

at only about 90 W. 

4. If a man drives at the rate of 50 km/h for the first 300 km of a trip, how fast must he 

drive over the next 300 km to have an average speed of 60 km/h for the 600 km journey? 

Solution. At an average speed of 60 km/h for 600 km, it would take 10 hours to complete the 

journey. At 50 km/h, the first 300 km drive would have taken 6 hours, which leaves him 4 

hours to complete the final 300 km. Hence, to make up the time he would have to drive at 75 

km/h over the final 300 km. 

 

5. One man can dig a hole in 2 days, another man can dig the hole in 3 days. How long 

will they take to dig the hole together? 

Solution: There is an ingenious way of solving this problem. One calculates the rate of 

digging the hole. The first man has a rate of ½ a hole per day, the second man a rate of 1/3 a 

hole per day. Thus the combined rate is İ + ӎ = 5/6 of a hole per day. Thus it takes 6/5 of 

day to dig the hole. 

§10 Additional Topics 

1. Definition of force 

The force acting on a mass is defined by multiplying the mass M in kg by the acceleration a in 

m/s
2
, i.e. 

Force = Ma. 

The unit of force is the Newton. Thus a Newton is the force that accelerates a mass of 1 kg by 

1 m/s
2. 

For example, a mass of 15 kg which when acted on by a force accelerates 40 m/s
2
 has 

a force of 15 ×40 = 600 N acting on it. 
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2. Newtonôs laws of motion (published in 1687) 

 

FIGURE 3. Newton (1643ï1727) was co-discoverer of the Calculus and developed 

a far-reaching theory of moving bodies such as the motion of the planets. 

Newton formulated three laws of motion. With these and the mathematical theory that 

Newton developed, which is called Calculus, Newton was able to explain all the laws of 

planetary motion. Newtonôs methods are still fundamental in calculating, for instance, the 

movement of satellites as well as the laws of physics which regulate our everyday lives. 

¶ The first law  states that a body continues moving in a straight line at the same 

speed unless acted on by a force. One result of this law was to dispel the commonly 

held belief that planets moved because angels or spirits were pushing them. 

¶ The second law defines force in terms of mass and acceleration as described in 

item 1 immediately above. 

¶ The third law  is that to every action there is an equal and opposite reaction. That 

law governs the motion of rockets as well as collisions of billiard balls. 

Newton also assumed that there is a force of attraction between two bodies with masses m1, 

m2, which is a constant G times the product of their masses divided by the square of the 

distance d between them, that is, 

F = G m1m2/d
2
 . 

The value of G has been found experimentally to be 6.67 ×10
-11

. The units of G are 

Nm
2
/kg

2
.where N stands for Newton, m for meter and kg for kilogram. 

3. Explain why all bodies fall to the ground at the same time if air resistance is not a 

factor, using Newtonôs Laws of Motion. 

Solution; If M is the mass of the earth and r is the distance to the centre of the earth, 

then a mass m will experience a force of 

GmM/ r
2 

according to point 2 above. Since the force equals ma where a is the acceleration, we 

have the equation 

ma = GmM/r
2
. 

If we cancel m from both sides, the result is 

a = GM/r
2
 

in which m doesnôt play a part.  This means that all bodies accelerate at the same rate 

independent of their masses and, hence, will reach the ground at the same time if 

released simultaneously. 
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4. Definition of work 

Work is defined to be the product of the distance a force is moved through times the 

force. The unit of work is the joule, abbreviated to J. 

The Joule is the work done in moving a force of 1 Newton a distance of 1 meter. Since 

the force due to gravity on a 100 gram mass is about 1 Newton, if you raise a 100 

gram weight from the floor to you waist, you will have done one joule of work. 

5. Definition of Watts 

The rate of work in Joules per second is called the power. A Joule per second is also 

known as a Watt. 

6. A man weighing 70 kilos walks up three flights of stairs in one minute. What is the 

work done and what is the rate of work, i.e. the power? 

Solution: Every step is 16 cm high and there are 16 steps per level. That means 768 

cm, i.e. roughly 8 m. He is lifting 70 kg. The force acting on the man is calculated by 

taking the mass and multiplying by the acceleration due to gravity, which is 9.81 m/s. 

Thus the force in Newtons is 

70³9.81 = 686.7 N. 

To calculate the work done we need to multiply the force by the distance, to get 

8³ 686.7 = 5,493.6 J. 

To find the rate or work we divide by the time in seconds, which is 60. Thus the result 

is 

5,493.6 /60 = 91.56 J/s = 91.56 W. 

7. Approximate the power in raising a shoe from the floor to a height of 2m. in three 

seconds. 

Solution: A shoe of mass say 400 g =0 .4 kg has a force of 0.4× 9.81 N . i.e. the mass 

0.4 kg multiplied by the acceleration due to gravity 9.81 m/s
2
. This is approximately 4 

N. So the work done on lifting the shoe two meters is approximately 8J. Thus the 

power required is 8/3 J/s. or 2.67 W. 

8. A car journey of 100 km takes an hour and uses 7 litres of fuel. What is the work done 

and what is the rate of work. 

Solution: This is another of those Fermi type calculations. According to the label on a 

bottle of cooking oil it has an energy value of 3,700 kJ per decilitre. It would be better 

to know the value for a decilitre of petrol but this figure is not available, so we use the 

cooking oil as a rough estimate. Hence a litre of petrol has about 40,000 kJ and 7 litres 

about 300,000 kJ. Per second we have therefore been using 100 kJ per second, or. 

100kw. Since a horsepower is roughly 740w or, even more roughly, a kilowatt , this 

corresponds to 100 horsepower. We know however that there are inefficiencies in 

engines, and so if we assume only one quarter of the energy is available at the wheels, 

the car is developing roughly 25 horsepower. 
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9. Calories and conversions 

Another unit of energy is the calorie. This is defined to be the amount of energy required 

to raise the temperature of one gram of water by one degree Centigrade. Since calories 

and Joules are measurements of energy one can convert the one to the other, and a calorie 

is the larger by approximately 4 times. More accurately, 

1 calorie = 4.184 J. 

Just as there is a kJ, there is also the concept of kilocalorie, a thousand times larger. This 

is also the unit used to measure human nutrition. It is often written as kcal or Calories, 

with a large C. A daily intake is roughly 2,000 kcal. 

10. Calories of some foods per 100 gram. 

¶ Bread 230 kcal 

¶ Olive oil 884 kcal 

¶ Butter 700 kcal 

¶ Fried hamburger 280 kcal 

¶ Cheese 30% 400 kcal 

¶ Cottage cheese 4% 100 kcal 

¶ Sugar 400 kal 

¶ Baked soya beans 100 kcal 

Thus, each gram of food gives between 1 and 9 kilocalories. 

11. Estimate the weight of food eaten each day. 

This is an exercise in the spirit of Chapter 4 Fermi Problems. Since one eats about 2,000 

kcal per day, and food gives about 2 kcal per gram (rough guess based on the list of foods 

above), we need 2,000 divided by 2, i.e. 1,000 g or 1 kg of food per day 

12 Estimate the rate of energy used by a person. 

Solution: Since 2,000 kilocalories is consumed in 24 hours (and this corresponds to the 

minimum), the rate of energy is 2000/24 ×3600 kilo calories per second = about 6 calories 

per second. From point 10 immediately above, 1 calorie = 4.184 J. Multiply by 4.18 to get 

roughly 24 J per second or 24 W. This seems to corroborate the roughly 30 W given in the 

text above, 

13. Given that 1W = 1J/s, that 1 calorie = 4.18 J, and that 1 horse-power = 745 W, é 

a) Express J in terms of calories 

b) Find the relationship between kJ and kW hours 

c) Find kW in terms of horse-power. 

Solution: 

a) Since 1 calorie = 4.18 J, dividing by 4.18, 1J = 0.239 calories. 

b) To express kW hours in terms of kJ. 1J/s = 1W, so 1 W hr = 3600J. 

So 1kW hour = 3600 kJ. Hence 1 kJ = 1/3600 kW hours = 2.778 X 10
-5

 kW hours. 
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c) 1 horsepower = 745 W. Thus 1000 horsepower = 745 kW. Thus dividing by 745, 1 

kW = 1000/745 horsepower = 1.342 horsepower. 

14. Temperature 

The most commonly used temperature scales are the Centigrade (also called Celsius) 

and the Fahrenheit. 

There is a third scale, called Kelvin. Zero degrees Celsius is approximately 273 degrees 

Kelvin, that is, 0 degrees Kelvin is 273 degrees below 0 Celsius. The Kelvin is of 

scientific interest because at a temperature of 0 degrees Kelvin molecules have no 

energy and have stopped vibrating. 

The Celsius scale, which dates from 1743, is based on a temperature of 0 degrees for 

water freezing and 100 degrees for water boiling. On the Fahrenheit scale, which dates 

from 1724, water freezes at 32 degrees and boils at 212 degrees.   

The founder of the scale, Fahrenheit, used 32 to avoid negative temperatures in winter. 

Also, Fahrenheitôs idea was to have a temperature of 100 degrees for the human body, 

which is close to the actual figure of 98.6 degrees Fahrenheit. Unfortunately, when he 

did his experiment, his assistant had a slight fever. 

To convert from Centigrade to Fahrenheit multiply by 9/5 and add 32. To convert from 

Fahrenheit to Centigrade, subtract 32 and multiply by 5/9. 

Example: Convert 20 degrees Celsius to Fahrenheit. We multiply 20 by 9 and divide 

by 5 to get 36. We then add 32 to get the Fahrenheit equivalent of 68 degrees 

Fahrenheit. 

Convert 80 degrees Fahrenheit to Centigrade. We subtract 32 from 80 to get 48, 

multiply by 5 and divide by 9 to get approximately 27 degrees Celsius. 

15. When does the Celsius reading equal the Fahrenheit reading? 

Solution Let t denote the temperature on the Celsius scale which is to be the same 

reading on the Fahrenheit scale. Since t degrees Celsius is the same as (9/5)t + 32 

degrees Fahrenheit, the problem is to find a t such that (9/5)t + 32 = t. Subtracting t 

from both sides gives (4/5)t = -32, so t = - 40. That is, when itôs -40 degrees Celsius it 

is also -40 degrees Fahrenheit. 

16. Check the following verse which accentuates the bewildering variety of old English 

units: 

A dozen, a gross and a score, 

Plus three times the square root of four, 

Divided by seven, plus five times eleven, 

Is nine squared 

And nothing more. 

Solution: This is indeed an exercise in English units. A dozen is 12, a gross is 144 and a 

score is 20, and so their sum is 176, Three times the square root of 4 is 6, giving a total of 

182. If we divide 182 by 7, we get 26. Add 5 times 11, i.e. 55, we get 81. 81 is 9 squared, 

as claimed. 
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17. Derive the units of G. 

Solution: We have the formula: force = GmM/r
2
.  Force has the units [M][L][T]

-2
, and r 

has the units [L]. 

From the formula 

[M][L][T]
-2
 = [G][M]

2
/[L]

2
, it follows that [G] = [M]

-1
[L]

3
[T]

-2 
. 
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CHAPTER 7 

MEASURING HEIGHTS OR TRIGONOMETRY 

 A knowledge of right-angled triangles with largest side 1 

enables us to calculate the lengths of any other right-angled  triangle 

§1 Shadow heights 

It is easy to measure heights by means of shadows. If you want to decide on the height of a 

tree then compare the length of its shadow with the shadow of a vertical pole. If the shadow of 

the tree is four times longer than the shadow of the pole, then its height is 4 times the height 

of the pole. 

Often it is easy to use your own shadow to make the comparison, since you know your own 

height. By calculating how many lengths of your shadows fit inside the shadow of the tree 

you can estimate the height of the tree. You can do the same for a building or any vertical 

structure. 

This method for measuring heights is based on comparing similar triangles. Similar triangles 

are the same shape, but of different size; like two shirts of different sizes. More formally, two 

triangles ABC and A¡B¡C¡ are similar if their angles are equal in pairs, as in Fig. 1, where 

angle A = angle A´, angle B = B´ and angle C = C´. If two triangles are similar, the one with 

sides of length x, y and z, then there is some number k so that the lengths of the other 

triangleôs sides are kĬx, kĬy, kĬz.. 

 

Fig. 1 Similar triangles 

How does this concern measuring heights from shadows? The reason comes about as follows. 

First of all, since the sun is so far away we may think of light from the sun as consisting of 

parallel rays. 
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Suppose that the top of the tree we are concerned with is at the point T (see Fig. 2) and its 

bottom at B. The sun casts a shadow that extends from B to the point E, the end of the 

shadow. Thus we have a triangle BTE with a right angle at the point B since the tree is at right 

angles to the ground. By measuring the length BE of the shadow of the tree, we can determine 

the treeôs height BT if we have a reference. 

The reference we obtain by measuring the shadow of a person standing upright, i.e. also at 

right angles to the ground. Suppose the top of the person is represented by the point P, the 

person is standing at A, and the personôs shadow is from A to Q as in Fig. 2. 

Now the two triangles BTE and APQ are similar, because each has a right-angle and the 

angles TEB and PQA are equal, since the sunôs rays are parallel. This means that the third 

angle of each triangle is the same. We can therefore find the lengths of the triangle BTE by 

multiplying the lengths of the triangle APQ by a constant k. In particular, if we know that any 

side of BTE is k times the length of the corresponding side of APQ, this will mean that all 

sides of BTE are k times the sides of APQ. 

For example, suppose the shadow cast by the person is 3 meters and that the tree has a shadow 

of 30 m, then the constant k must be 10. If the person has a height of 2 m, then the height of 

the tree must be 10 times the height of the man, i.e. 20 m. 

We can write this in the form of an equation in general. To find the constant k we simply 

divide the length of the shadow of the tree by the length of the shadow of the man, i.e.  

length of shadow of tree/length of shadow of man. 

We then multiply by the height of the man, so that 

Height of tree = (shadow of tree/shadow of man) × (height of man), 

 

FIGURE 2 Shadows 

We checked the height of a building this way: By comparison, we climbed from floor one to 

floor two, measuring the number of steps. There were 16. Each step was 16 centimetres high, 

so the total height for one floor is 16×16 = 256 cm, i.e., roughly 2.60 meters. The three-storey 

flat was therefore 7.80 meters. But since the ground floor was about one meter from the 

ground, we made the height to be 8.80 meters, i.e. about 9 meters. This agreed with the height 

calculated from the shadows. 

These are rough calculations, but the surveyor uses the same principle of similar triangles and 

measuring very accurately gets precise results. 

§2 The artistôs method 

A standard method used by artists is shown in Fig. 3. Here he holds his arm straight in front 

of him and compares the various heights on his pencil. For instance, if he is drawing a head, 

he gets the tip of the pencil at the top of the head he is drawing, and then places his thumb to 
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be in line with the eyebrows. He then uses the pencil to mark this distance on his sketch. Then 

in a similar way, he measures the distance of the eyebrows and the tip of the nose, and then to 

the mouth and finally to the chin. In this way he gets accurate measurements. This is also 

based on similar triangles. The explanation is given in §5 problem 8. 

 

 

 

 

 

 

 

 

FIGURE 3 The artistôs method 

Right-angled triangles appear often in practice, for instance in surveying. Given a right-angled 

triangle ABC and knowing the angle at A and the length of the largest side h, we can with the 

aid of a table calculate the lengths of the other two sides. This is the idea of sine and cosine. 

The largest side of a right-angled triangle is also called the hypotenuse. 

We would have to produce an infinite table if we listed all right-angled triangles. We reduce 

our list by considering right-angled triangles with hypotenuse 1. The triangle is then 

determined by one of its angles, since the sum of the angles of a triangle must be 180 degrees. 

The sine and cosine are simply the lengths of the two sides in a triangle with hypotenuse 1. 

Thus in the right-angled triangle ABC in Fig. 4, AB has length 1. 

 
FIGURE 4 Definition of sine and cosine 

In Fig.4, the side BC, the side straight in front of the angle A, is called sine of the angle at A, 

and written sin(A). The side AC is called the cosine of the angle at A and written cos(A). 

(Note that it is customary to write the sine or cosine of a given angle without the final e.) 

To make sure you remember which is which, you can think of sin as S in, i.e. short for 

straight in front . Also you can think of cos and that the C stands for the closer side.  
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The sine and cosine are useful for surveying and navigating.  It is interesting to note that the 

gps system, which from satellites determines the latitude and longitude, uses them as well.   

 

Extensive tables of sine and cosine exist. Some of the values are listed below in Fig. 5. 

Angle in degrees Sine Cosine 

0º 0 1 

15º 0.2588 0.9659 

30º 0.5 0.8660 

45º 0.7071 0.7071 

60º 0.8660 0.5 

75º 0.9659 0.2588 

90º 1 0 

FIGURE 5. Table of sines and cosines to 4 decimal places 

There is also a useful approximation if we are dealing with very small angles. If d is the value 

of an angle in degrees, and d is small, then the value of sin(d) is approximately dp/180. For 

instance, sin(0.180̄) is 0.001p, or 0.00314, correct to 5 decimal places. 

Now suppose we are given a right angled-triangle XYZ with Z a right angle, see Fig. 6. Then 

consider the right-angled triangle ABC with right angle at C and with angle A equal to angle 

X. Then triangle ABC is similar to triangle XYZ. But the sides of triangle ABC are already 

tabulated in the tables of sine and cosine. Since the hypotenuse of the triangle XYZ is h, 

which is h times the length of the hypotenuse of ABC, this tells us that the multiplication 

factor connecting the sides of XYZ to ABC is h. So to find the sides of triangle XYZ it is only 

necessary to multiply the sides of ABC by the length of the hypotenuse h of XYZ, that is the 

sides of XYZ are hsin(A) and hcos(A). 

 

FIGURE 6. A right-angled triangle XYZ with hypotenuse 

h, and a similar triangle ABC with hypotenuse 1 

Example 1: A right-angled triangle has angle 45 degrees. Calculate the length of the sides if 

the largest side, the hypotenuse, has length 14m. 

Solution. The sides will be given by 14×sin(45̄) and 14×cos(45̄). From the above table the 

sine of 45 degrees is 0.7071, as is the cosine, so the length of either of the shorter sides is 14 

×0.7071 = 9.9. 
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Example 2: A right-angled triangle has angle 30º. Calculate the length of the sides if the 

largest side has length 29m. 

Solution. The sine of 30º is 0.5. Hence, the length of the side opposite the 30 degree angle is 

29×sin(30̄) = 29 ×0.5 = 14.5 m. The length of the side adjacent to the 30 degree angle is 29 

×cos(30̄) = 29 ×0.8660 = 25.114 m. 

Example 3: Determine the lengths of all the sides in the right-angled triangle in Fig. 7. 

Solution: The sides are AC = 10×sin(15̄) = 2.588 and AB = 10×cos(15̄) = 9.658, from the 

table in Fig. 5. 

 

FIGURE 7. A right-angled triangle with 15º angle at B and hypotenuse 10 m. 

§4 Dropping a stone over a cliff 

One way of estimating the height of a cliff, which is over a deserted stretch of water, is to 

drop a stone and with a stopwatch measure the time for the stone to reach the water. If this 

time is t, then the height is given by the formula 

Height of cliff = ½gt
2
, 

where g is the acceleration due to gravity, i.e. about 9.8 ms
-2

. (This formula was mentioned in 

Example 4 §8 of Chapter 6.) In our case we got a time of 1.5 s, and so the height of the cliff 

was 

½ ×9.8 ×1.5 ×1.5 = 11.025 m. 

Example: Using a ruler to calculate reaction time. 

Use a centimetre ruler. One person holds the ruler at the top and the other holds his hand near 

the bottom, with forefinger and thumb almost clasping the ruler, but loosely, so that if the 

ruler is released at the top it will fall. 

The first person suddenly says now, and releases the ruler. The second person must clasp his 

finger and thumb together so stopping the falling ruler. One then notes the distance the ruler 

has fallen before the second person reacts and grabs the ruler. The reaction time is then 

calculated from the formula 

s = ½gt
2 

From this formula we see on multiplying by 2 and dividing by g that 

2s/g = t
2
 

We then calculate the time in seconds by measuring the distance s in cm. Then calculate 2s/g 

and take the square root. That is the reaction time. For g take 980 cm s
-2

. 

In an actual test one of us stopped the ruler in 10 cm. Thus the reaction time was 0.14 s.. 
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§5 Solved problems and other optional topics 

1. Suppose you are measuring the height of a building with a shadow 20 meters long, 

and your shadow is 5 m. long. If you are 2 m tall, how high is the building? 

Solution. We use the formula we found in §1 (with the slight modification that it is a building 

and not a tree that we are concerned with). 

Height of building = (shadow of building/shadow of man) × (height of man) 

If h is the height of the building, then h = 20/5 ×2 = 8 m. 

2. Explain why sine of 0º is 0 and sine of 90º is 1. 

Solution. For an angle of 0º it is not exactly clear how to define the sine. But if we take a 

right-angled triangle with hypotenuse 1 in which the angle is very small, we can see that the 

side, which defines the sine, becomes very small indeed, and the smaller the angle the smaller 

the side becomes. It seems reasonable to define the sine of 0º as 0. 

Similarly we see what happens when the angle approaches 90º, where it is clear that the side 

opposite the angle becomes larger and larger and seems to be getting closer and closer to the 

hypotenuse 1. It is thus natural to define the sine of 90º as being 1. 

 

3. Determine the sine of 30º and 60º without the use of tables. 

Solution. The triangle in Fig. 8 has all three sides of length 1. 

                                                         B 

                                                                             

 

 

                                  A                                              C  

                                                           D 

FIGURE 8. Equilateral triangle with sides of length 1. 

The angles are also equal, so each measures 60º. A perpendicular dropped from the vertex B 

to the base bisects the base, that is, cuts the base in half, so AD = DC. and AD = 1/2. Also, 

BAD is a right-angled triangle with hypotenuse BA of length 1. 

Since the angle BAC is 60º, the angle BAD is 30º, so sin(30º) = AD = 1/2. Also, since ADB is 

a right triangle, by Pythagorasôs theorem, AD
2
 + BD

2
 = AB

2
. Hence, (1/2)

2
 +BD

2
 = 1, so BD, 

the side opposite the 60º angle at A, is the square root of 

1 - (1/2)
 2
 = 3/4, 

which means cos(30º) = 0.866. 

 

4. A surveyor measures the angle of a top of a building at 15 degrees at a distance of 20 

meters. His instrument is at a height of 1.5m. What is the height of the building? 

Solution: Refer to Fig. 9. 
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We know that the triangle ABC is similar to a triangle XYZ with hypotenuse 1 and angle 15º, 

which has sides YZ = sin(15̄)= 0.2588 and XZ = cos(15̄) = 0.9659 as listed in Fig. 5. Thus, 

the sides of ABC are simply a multiple k of the sides of XYZ, so, in particular, AC = kXZ. 

Thus the factor k is calculated by taking 

AC/XZ = 20/cos (15º) = 20/0.9659 = 20.706. 

Thus, BC = 20.706× sin(15º)= 20.706 × 0.2588 = 5.359. To get the height of the building we 

must then add 1.5 meters, thus getting a final height of 6.859 meters. 

 

FIGURE 9. A surveyor calculates the height of a building. 

5. I stood on the top of a cliff and dropped a stone. It took 3 seconds before I heard the 

splash when the stone hit the water below. What is the height of the cliff? 

Solution: The distance is calculated from the formula 

distance fallen = ½gt
2
. 

In this case, t = 3 and g, as we know, is 9.8 m/s
2
. Thus, the distance is ½×9.8×9 = 44.1 m. 

6. Remark. 

For the next two problems we will accept the following fact from physics: A force F at an 

angle a can be regarded as the result of two forces F1 and F2 acting at right angles to each 

other, as shown in Figure 10. In particular, the two forces are  

F1 = F×sin(a) and F2 = F×cos(a). 

 

FIGURE 10. The force F can be regarded as the sum of two forces at right-angles to 

one another 

7. Explain why if the sides of a military battle tank are oblique rather than vertical, a 

shell is less able to penetrate it. For example, consider the shell hitting the tank at an 

angle of 90̄ and then, if the tankôs sides are slanted, at an angle of 30.̄ 

Solution; We use he remark in 6 above. If the shell hits a vertical side of a tank standing at an 

angle of 90 degrees with a force F, then the force acting at that point is going to be F. 

However, if the angle at which it is directed is 30 degrees, then the force can be regarded as 

the result of the two forces, F×cos(30)̄ and F×sin (30̄). The force of F×cos(30̄) is parallel to 

the tanks armour, and so does not help to penetrate it. The other force of F×sin(30)̄ is ½×F 
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and this is the effective penetrating force. This explains why angling the tankôs armour helps 

reduce the shellôs impact. 

 

8. Sunbathing at an angle rather than directly. Suppose you are lying in front of the sun 

with the rays coming in at 90 or at 30 degrees. The effect is considerably reduced 

according to sine of 30 degrees. 

Solution: If the intensity of the sunôs radiation is I, then a similar result to 6 above holds for 

it, that is the intensity can be regarded as two intensities, at right-angles, the one of 

I×sin(30̄ ) and I×cos(30̄), The intensity parallel to the skin does not cause any sunburn, and 

the only part that gives sunburn is I×sin(30)̄ = ½×I. 

The same type of argument helps to explain why, when the sunôs rays come in at lower 

angles, winter is colder than summer. 

9. Explain how the artistôs method works, 

 

 

 

 

 

 

 

 

 

FIGURE 10. The artistôs method explained 

In Fig. 10 the bottom of the vertical object we are drawing is at the point D and the pencil is 

held vertically at the point A. The artistôs eye is at O. 

The point C represents a point on the object which is at a height x above the bottom point. 

Seen by the artist this point is at a height of x¡ on the pencil which is fixed at the point A. 

Since he triangles OAB and ODC are similar, we have that 

x¡/OA = x/OC, or that x¨= (OA/OD) x. 

Thus x¨ is proportional to x and with this method we get a direct scaling of the object to be 

drawn. 

O 

B 

A 

x  ́

D 

C 

x 

x´
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Chapter 8 

LOGARITHMS AND NATURAL LOGARITHMS 

ñThe invention of logarithms saved astronomers a lot of trouble and doubled 

their livesò - Laplace 

 

§1 Multiplying by adding. Logarithms 

 

FIGURE 11. John Napier (1550-1617) 

Multiplication is more time consuming than addition. To multiply two 8-digit numbers, we 

need to perform 64 multiplications and several additions. On the other hand, to add two 8-

digit numbers we need only add 8 times. The difference is large and gets much larger with 

every increase in the number of digits, so after the invention of the telescope ushered in a 

revolution in astronomy, which, in turn, necessitated large and precise calculations, it became 

a matter of time before a method of simplifying calculations would be found. The answer 

was: logarithms. 

John Napier in Edinburgh published the first table of logarithms in 1614. It is said that Henry 

Briggs, professor of geometry in Gresham College, London, was so impressed by Napierôs 

system of logarithms that he was speechless for fifteen minutes when they first met, gazing at 

Napier with admiration. Then he explained that he had travelled especially to see Napier and 

enquired, ñé by what engine of wit or ingenuity you came first to think of this most excellent 

help in astronomy... ñ. 

Ten years later, in partial collaboration with Napier, Briggs published a new table of 

logarithms, which he called ñcommon logarithmsò, based on an improved system still in use 

today. 
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In Fig. 2 we have a short table of common logarithms. In each column the number on the right 

is the logarithm of the number on the left. Briggs produced a table of logarithms to 17 places, 

which meant it could be used to find products of up to 17-digit numbers, correct to 16 decimal 

places. This was a major effort and took almost the whole ten years. Since then, much larger 

tables to over 200 places have been constructed. 

 

1.0 .000 2.0 .301 3.0 .477 4.0 . 602 5.0 .699 6.0 .778 7.0 .845 8.0. .903 9.0 .954 

1.1 .041 2.1 .322 3.1 .491 4.1 .613 5.1 .708 6.1 .785 7.1 .851 8.1 .908 9.1 .959 

1.2 .079 2.2 .342 3.2 .505 4.2 .623 5.2 .716 6.2 .792 7.2 .857 8.2 .914 9.2 .964 

1.3 .114 2.3 .362 3.3 .519  4.3 .633 5.3 .724 6.3 .799 7.3 .863 8.3 .919 9.3 .968 

1.4 .146 2.4 .380 3.4 .531 4.4 .643 5.4 .732 6.4 .806 7.4 .869 8.4 .925 9.4 .973 

1.5 .176 2.5 .398 3.5 .544 4.5 .653 5.5 .740 6.5 .813 7.5 .875 8.5 .929 9.5 .978 

1.6 .204 2.6 .415 3.6 .556 4.6 .663 5.6 .748 6.6 .820 7.6 .881 8.6 .934 9.6 .982 

1.7 .230 2.7 .431 3.7 .568 4.7 .672 5.7 .756 6.7 .826 7.7 .886 8.7 .840 9.7 .987 

1.8 .255 2.8 .497 3.8 .580  4.8 .681 5.8 .763 6.8 .833 7.8 .892 8.8 .944 9.8 .901 

1.9 .279 2.9 .462 3.9 .591  4.9 .690 5.9 .771 6.9 .839 7.9 .898 8.9 .949 9.9 .996 

        10.0 1.000 

FIGURE 2. Table of common logarithms 

This is the way logarithms are used to multiply. If we want to find the product of two 

numbers, x and y, we look up their logarithms in a table of logarithms. The sum of these 

logarithms will be the logarithm of their product. The answer is the number with this 

logarithm, which then can be found from the table of logarithms, such as the one in the above 

table. For example, from the table, 

logarithm of 2 = 0.301 and logarithm of 3 = 0.477. 

The sum of these two logarithms, 0.778, will be the logarithm of the product of 2 and 3, 

which we find from the table to be the logarithm of 6. This is a trivial example, but, in 

general, we can use tables of logarithms to calculate more difficult products easily. 

If we denote the common logarithms of x and y by Log(x) and Log(y), then what we said in 

the previous paragraph translates to the equation: 

Log(x) + Log(y) = Log(xy). 

Logarithms look like magic, but this is actually nothing but the law of exponents as explained 

in Chapter 2 §4. For the theory see the explanation in §5 of this chapter. 

The initial impetus for logarithms as we said was the need to simplify multiplication. 

However, we can now do this extremely quickly with the aid of computers, so what is the 

point of studying logarithms? The answer is that logarithms are still extremely useful in 

theory. For example, as we shall see later (in Chapter 15) the idea of logarithms gives a 

formula for approximating the number of prime numbers less than a given number n. (A 

prime number is a number like 5 or 7 or 17 which is not itself the product of smaller numbers. 
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An example of a non-prime number is 6, the product of 2 and 3.) It is difficult to see what the 

logarithm could possibly have to do with prime numbers, and the result is indeed a surprise. 

Other uses of logarithms are in chemistry to define acidity of a substance and in acoustics, to 

define decibels, the unit of sound intensity. We will not discuss these but point out that they 

are important applications of the logarithm. 

§2 Doubling your money 

As an application of logarithms, suppose you invest one pound at x% interest per annum. A 

good approximation to the number of years required to double your money at this rate of 

interest is 69/x. For example, if the rate of interest is 7%, it will take just under 10 years to 

double your money. This rough approximation is more accurate with small values of x, but is 

still useful. We will explain how this works in §6, problem 1. 

Example. 

If you receive interest at 3%, how long will it be before you double your money? 

Solution: Divide 69 by 3 to get 23 years. 

As this is a long time, maybe in this case one would want to know how long it takes for your 

money to increase by 40%. The rough rule in this case is to divide 34 by the interest rate. 

Thus with a 3% interest rate, to increase your money by 40% will take approximately 34 

divided by the interest rate, i.e. 34 divided by 3 or between 11 and 12 years. See §6 problem 2 

for an explanation of why this works. 

Ä3 Eulerôs e 

Common logarithms are not the only ones in use. There are other logarithms, called natural 

logarithms, which have many uses, mainly scientific. In Chapter 15 we will use this logarithm 

to explain a formula giving an estimate for the number of prime numbers less than a particular 

number. To understand the difference between the natural logarithms and common 

logarithms, we change direction. We shall define a new constant e, as famous in mathematics 

as the constant p. 

To see how e comes about imagine that you invest a unit of money, say, a pound or a dollar, 

at a rate of x per cent per annum. That means that your return at the end of the year will be 

(1 + x/100). 

If we replace x/100 by y, the return can be expressed as (1 + y). Next, suppose that the rate is x 

percent per year, but paid every six months. That means that every pound or dollar invested 

will return (1 + y/2) pounds or dollars after the first six months, and this money will itself get 

an interest of x/2 percent for the next six months. Hence, the total you will get for one year is 

will be 

(1+y/2)×(1+y/2) = (1+y/2)
2.
. 

Similarly, if the rate is x% payable every 3 months, that is, 4 times a year, the return after 1 

year will be 

(1 + y/4) 
4
. 

In general, if interest is paid at the end of n equal periods per year, the total return for one year 

will be 

(1 + y/n) 
n
. 
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The table below shows the values of (1 + y/n) 
n
 for y = 1 and various values of n. 

 

Value of n Value of (1 + 1/n) 
n 

10 2.593742 

100 2.704814 

1000 2.716924 

10000 2.718146 

1,000,000 2.71828 

 

FIGURE 3. Approximating (1+1/n)
n
 

The question is, what happens as n increases further? Here we come face to face with 

fundamental and subtle concepts, which are the subjects in more advanced courses in 

mathematics. The best we can do is to calculate (1 + 1/n) 
n
, with n as large as we can manage. 

We then hope that this is close to the correct result and that nothing unexpected will happen 

with larger n. Sometimes this method works reasonably well, sometimes it goes disastrously 

wrong. To be sure of what we are talking about requires a course after the first course in 

calculus. Neither Newton nor Leibniz, the discoverers of the calculus, had a complete 

understanding of these concepts, and indeed it has taken some 300 years after them to develop 

the proper ideas. 

In this case, however, large n produces no surprises, and we will get a number approximately 

2.718. This is the number the Swiss mathematician, Leonard Euler (1707-1783), called e. It 

has retained this name to this day. 

§4 The natural logarithm is roughly 2.3 times the ordinary logarithm 

The logarithms discovered by Briggs are called common logarithms. They are also called 

logarithms to the base 10, they are defined in terms of exponents of 10 and satisfy  

Log(10) = 1. 

Natural logarithms, usually denoted by ln(x), are defined in terms of exponents of e and have 

the same property as common logarithms, in that multiplication can be replaced by addition. 

They are also called logarithms to the base e because they are based on exponents of e rather 

than of 10. In particular, ln(e) = 1, and, as we already have said, the natural logarithm retains 

the important property that 

ln(xy) = ln(x) + ln(y). 

For ordinary calculations logarithms base 10 are more convenient, but for theoretical 

questions logarithms base e have important advantages. One disadvantage is that a table is 

much more difficult to construct than for common logarithms. Fortunately, there is a 

conversion factor: To obtain ln(x), multiply Log(x) by ln(10), which is approximately 2.3026. 

An interesting approximation for ln(1 + x) when x is small is x. For instance, ln(1 + .001) = 

.000999950033, which is very close to .001 The smaller x is the better the approximation. 
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If x is a very large number with n digits, a good approximation to Log(x) is (n-1). For 

instance, Log(5,613,678) = 6.749, to 3 decimal places. The error in approximating this as one 

less than the number of digits, i.e. by 6, is less than 1, so this is accurate to 20%. If the number 

has 100 digits, the error is at most 1, and so the approximation is correct to 1%. In general, the 

larger the number, the better the accuracy of this rough approximation. 

 

§5 Theory of logarithms 

Theory of logarithms. To explain Briggsô common logarithms we need the concept of 

exponents, introduced in Chapter 2. For any number, a, and each whole number n, a
n
 is 

defined as the product of n copies of a and n is called the exponent or power of a. For 

example, 2
3
 = 2×2×2 = 8. We define a

1 
= a, and a 

0
 = 1. 

There are two laws of exponents we need: 

a
 m

×a
 n
 = a

 m + n
, and (a

 m
)
n
 = a

 mn
. 

For example, 10
2
×10

3
 = 10

5
, that is, the product of two 10s times the product of three 10s is 

the product of five 10s. Also, (10
2
)
3
 = 10

6
. 

In Briggsô system the logarithm of a number x, written as Log(x), is defined as the exponent 

of 10 which gives x, that is, Log(x) = y if  

10
y 
= x. 

For example, Log(100) = 2, since 10
2
 = 10×10 =100, Log(10) =1, since 10

1
=10. 

To define logarithms we will need to define 10
y 
for exponents y other than whole numbers. 

Fractions as exponents. Let n be a positive integer and let x = 1/n. Then a
x
 is defined to be 

the nth root of a. Thus 4
½
 is that number whose square is 4, and, hence, 4

½
 = 2. If x = m/n, i.e., 

one positive integer divided by another, we define a
x
 to be the m-th power of a

(1/n)
. For 

instance, 

2
3/2

 = (2
½
)
3
 = (1.4142)

3
 = 2.828. 

So far we have defined a
x
 for all exponents which can be written in the form m/n, where m 

and n are whole numbers. Such numbers are called rational numbers. But there are many 

numbers which are not rational numbers (for example, the square root of 2, as explained in 

Chapter 14, §5. Nevertheless it is possible to define a
x
 for any positive number x, but a precise 

definition uses the concept of limit, which we do not discuss here. Instead we will accept that 

this can be done, and we will also assume that the closer a rational number y is to x, the better 

a
r
 is an approximation to a

x
. For example, the square root of 2 is approximately 1.414, which, 

is 1414/1000, so a
ã2

 is approximately the 1414-th power of the 1000-th root of a. 

Negative exponents. If the above law of exponents is to hold for both positive and negative 

numbers, then, a
x 
× a

-x
 should be a

x-x
 = a

0 
= 1. Therefore, we define a

-x
 = 1/a

x
. For example,  

2
-3 

= 1/2
3
 = 1/8. 

Definition of logarithms to the base a. If a
x
 = y, then x is defined to be the logarithm of y to 

the base a, and is written as loga(y). In particular, common logarithms can be defined as 

logarithms to the base 10.  

Definition of the natural logarithm  (also called logarithm to the base e). If e
x
 = y then x is 

the natural logarithm of y, written as x = ln(y). 
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Laws of logarithms 

1. Log(x) + Log(y) = Log(xy) 

To see this let Log(x) = x´and Log(y) = y´, Then, xy = 10
x´
10

y´
= 10

x´+y´
 so, by definition, 

x´+ y´= Log(xy), i.e., Log(x) + Log(y) = Log(xy), 

2. xLog(y) = Log(y
x
). 

This follows from raising both sides of the defining equation, y = 10
Log(y)

, to the power x. 

Thus, y
x
 = (10

Log(y)
)
x
 = 10

xLog(y)
, i.e., xLog(y) is the exponent of 10 which gives y

x
, so, by 

definition, Log(y
x
) = xLog(y). 

§6 Optional worked examples 

1. Why does the rough rule for doubling your money work? 

Solution: If the interest rate is x%, the return on M invested for n years is M(1 + x/100)
n
. If 

this is to double, (1 + x/100)
n 
= 2. Taking the natural logarithm on both sides of the equation, 

the left hand side equals ln(1 + x/100)
n
 = n ln(1 + x/100), and, since x/100 is small,  

ln(1 + x/100) is approximately, x/100 ï see §4. 

On the other hand, the right-hand side must be ln(2) = .6931471. 

Hence, we have the equation nx/100 = .69 to solve. Multiplying the right side of the equation 

by 100 and dividing by x we see that n is approximately 69 divided by x. 

 

2. Why does the rough rule for the money increasing by 40% work? 

Solution. An increase of 40%, means a multiplication factor of 1.4 instead of 2 in the above 

example, and since ln(1.4) is approximately .34, for 40% the above solution becomes nx/100 

= .34, so n = 34/x. 

3. Why is ln(x), the natural logarithm of x, equal to ln(10) times Log(x)? 

Solution: By definition, x = e
ln(x)

. Also, x = 10
Log(x)

, and since 10 = e
ln(10)

, x = (e
ln(10)

)
Log(x)

. 

Hence, x = e
ln(10)Log(x)

, so ln(x) = ln(10)Log(x). 

4. Given that Log(2) is approximately 0.3, find Log(5). 

Solution. Since 2×5 = 10, Log(2×5) = Log(10) = 1. Hence, Log(2) + Log(5) = 1, so Log(5) is 

approximately 0.7. 

5. Use 2
10

 to find an approximation to Log(2). 

Solution. Since 2
10

 = 1024, 2
10 

is approximately 10
3
. Taking the 10

th
 root of both sides gives, 

10
0.3

 = 2, so Log(2) = 0.3, approximately. Actually, to 4 decimal places, Log(2) = 0.3010.  ̂

§7 Logarittihms and Planeetary Motion 

Keplerôs Laws 
Astronomers by the 1600s had observed the planets, established their distance to 
the sun, and their period, i.e. the time it took for the planet to return to its orginal 
position.  These figures are summarized in the table bleow.  The period is measured 
in days, and the distance is measured with the distance of the earth to the sun as 
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unit.   Thus from the table, the distance of Jupiter from the sun is a little more than 5 
times the distance of the earth to the sun. 
 

Plantet Mean distance D to sun Period  T of rotation in days 

Mercury 0.387  0.241 

Venus  0.723  0.615 

Earth  1.000  1.000 

Mars  1.524  1.881 

Jupiter   5.203  11.862 

Saturn  9.555  29.458 

 
The relationship between T and D is not easy to see, but by  condiering  ln(T) and 
ln(D, it  seems as if  ln(T) is one and a half times ln(D).   
We have listed ln(D  and ln(T) in the table below.   We have calculated a fourth 
column by multiplying ln(D) by 3/2.  This last column agrees well with the third 
column ln(T), with an error of at most 1 in a 1000.. 
 

Plantet  ln(D)  ln(T) 3/2³ln(D) 

Mercury ī0.949  ī1.423 ī1.424 

Venus  ī0.324 ī0.486 ī0.486 

Earth  0.000 0.000 0.000 

Mars  0.421 0.632 0.632 

Jupiter  1.649 2.473 2.474 

Saturn  2.257  3.383 3.386 

 
 
 
 
Thus we have Keplerôs law  
 

3/2³ln(D)  = ln(T)  
 
This is the third of Keplerôs famous laws.  
 We can simplify the left-hand side to ln(D3/2) and so if we calculate e  to this power 
we get 
 

D3/2 = T.. 
 
This is indeed a remarkable formula. 
 
 

§8 Earth quakes measured on the Richter scale 

 
Earthquakes are usually measured on the Richter scale.  
The details are involved but we will give a simplified version.  The severity of an 
earthquake 100 kn away can be calculated as follows. 
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To set up the scale, Richter decided on a certain reading S on the seismograph 
whould be taken as a standard.  Then if a seismograph 100 km away recorded I on 
the seismograph, the Richter reading was defined to be  
 

Log(I/S). 
 
That is, we divide the intensity I by the standard S and then take the logarithm,  So if 
an earthquake gave a reading 10 times as large as the standard S, its Richter 
number would 1, if it was 100 times larger, its reading would be 2 and if it was a 1000 
times larger, its reading would be 3.   
 
The seismograph of course has to be specified and there has to be a way for dealing 
with earthquakes which are at other distances than 100 km.  The purpose of this 
example is to illustrate the use of the logarithm for this scale.  There is also a 
logarithmic scale used for sound and also one for the apparent magnitude of stars. 
 
A Richter value of 4 corresponds to light eathrquakes, usually without significant 
damage, but easily noticed shaking a nd ratling. 
 
 
A Richter value of 8 corresponds to a severe earthquake causing serious damage 
over an area of several hundreds o kilometres., 
 
 A Richter ,value of 9 would be devastating over an area of many thousand 
kilometeres. A reading of 10 has fortunately not yet been recorded. ,  

   

 

§9 Some Historical remarks 

Around 1600, Lippershay invented the telescope in Holland. At first this invention was 

classified as a military secret, but when Galileo got wind of it he fashioned one on his own. 

His observations led to great strides in astronomy, which, in turn, led to efforts by 

astronomers to simplify the many precise numerical calculations involved. The main 

problems came from spherical trigonometry with the need to multiply numbers with a large 

number of digits precisely. 

In 1524, Stifel described the basic principles of logarithms, but did not carry his ideas through 

to constructing a table. Almost a hundred years later the Scot, John Napier, after working 

twenty years, published the first table. It was he who called his exponents logarithms. His 

table was an immediate success and made an impact similar to that made by the introduction 

of computers in our time. 

Napierôs original system was not based on powers of 10. This had the big disadvantage that 

his table of logarithms was very long. It had to include logarithms of all numbers, not just 

from 1 to 10. Briggs realized the convenience of using powers of 10, and in 1624 published 

his table, which greatly simplified the use of logarithms. 

The advantage of using base 10 is in the construction of tables. A table of common logarithms 

of numbers from 1 to 10 is readily extendable to any number. The rule is to express the 
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number as a number, say x, between 1 and 10, times 10 to some exponent. The common 

logarithm is then the exponent of 10 plus Log(x). For example, 5,613,678 = 5.613678 × 10
6
, 

so 

Log(5,613,678) = 6 + Log(5.613678). 
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Chapter 9 

COORDINATE GEOMETRY 

Algebra was one thing, and Geometry another. Descartes made them one. 

 

FIGURE 1. René Descartes (1596-1650) 

The idea of describing the position of a point in a plane by giving its distances from 

each of two lines that are perpendicular to one another is deceptively simple. But it 

leads to two important consequences: The ability to visualise how quantities depend 

on one another, and also a link between algebra and geometry. A very difficult 

problem in algebra may in its geometrical translation prove to be solvable, and, vice-

versa, a difficult geometrical problem may turn out to be easier to handle in its 

algebraic translation. We owe this ingenious idea to the French mathematician and 

philosopher, René Descartes (1596-1650). His methods have been expanded and 

improved by many other mathematicians, to make the impressive subject we have 

today.  
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§1 Coordinates 

 

FIGURE 2. Coordinates 

In Fig. 2 we have drawn two straight lines, OX and OY, which intersect in a point O, and are 

at right-angles. The position of any point can be described by a pair of numbers, the first gives 

the horizontal distance of the point P to the vertical line OY, while the second gives the 

vertical distance of P from the horizontal line OX. Distances above OX are taken to be 

positive, while distances below OX are taken to be negative. Distances to the right of OY are 

taken to be positive, while distances to the left of OY are taken to be negative. The position of 

a point is indicated by bracketing these two numbers together. And this bracketed pair of 

numbers are called the coordinates of the point.. For instance, in Fig. 3, the coordinates of the 

point P are (2,1), those of the point Q are (1,2), those of R are (-2,-1.5), and the coordinates of 

the point S are (-3, 0.75). We call the line OX the x-axis and OY the y-axis, while the point O 

is called the origin . Any collection of points on the plane is called a graph. 

 

FIGURE 3. Examples of coordinates 

 S(- 3,0.75)  

 Q(1,2)  

 R(- 2, - 1.5)  

 P(2,1) 
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§2 Graphs as a concise source of information 

The first important application is the listing of information. Figure 4 illustrates a graph of 

temperature scale conversions. For example, to find the equivalent on the Fahrenheit scale of 

20 degrees Celsius we carry out the following: 

 

FIGURE 4. Graph of degrees Celsius vs. degrees Fahrenheit 

We locate 20 on the OC axis and draw a vertical line till it reaches the curve, which in this 

case is a straight line. The corresponding F value is 68. So 68ºF corresponds to 20º C. By 

using the same procedure in reverse, we can convert from Fahrenheit to Centigrade. 

Another example is illustrated in Fig. 5. This enables us to convert from pounds, £, to euros, 

ú. Using this graph the equivalent of 5 euros in pounds is at the intersection of the vertical line 

drawn from 5 on the ú-axis to meet the curve. The corresponding value on the £-axis is 3.50, 

which is the corresponding value in pounds. 
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FIGURE 5. Graph of pound versus euro 

A graph like this is very useful when travelling abroad. It is easy to make one that is accurate 

at the time of travel. Simply check the number of euros corresponding to Ã10, ú14, for 

example, and plot the point (10,14). Draw the straight line joining this point and the point O. 

This then gives you the required conversions. Of course, this scheme can be used for 

converting from other currencies, using the relevant correct rates. 

As a third example of the conveying of information, consider Fig. 6, the 2005 U.K. postal 

rates for a 1
st
 class letter, in which we can relate the weight of a letter to the postage charge to 

send it. 

 

FIGURE 6. Cost versus weight of the package 

§3 Plotting a graph 

Example 1 The number of cells in time t. 

A biologist checks under a microscope the number of cells that he is growing in a culture. At 

a time t = 0 there is only one cell. The table below summarises his findings. 
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Time t 0 1 2 3 

Number of cells 1 2 4 8 

We plot the points with coordinates (t, number of cells at time t). For instance, at time t = 2 

we have 4 cells so we plot the point with coordinates (2,4). 

After plotting all these points, we then draw a smooth curve joining them as shown in Fig. 7. 

 

FIGURE 7. Graph of number of cells at a time t 

Example 2 

This is an example where a quantity y depends on another quantity x and we have the 

following table of values. 

x 0 1 2 3 4 

y 1 3 4 4.5 3 

We again plot the points (x, y) and then draw a smooth curve joining these points as in Fig. 8. 

 

FIGURE 8. Graph of Example 2 

One important advantage of this visual representation is that although the data was given for 5 

points only, this rough graph allows us to approximate a value of y for intermediate values of 

x. For instance, a reasonable guess for y for x = 3.5 would seem to be 4.6. 
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Example 3: Stretched rubber band. 

An elastic band has various weights attached to it and its length is measured. The graph is 

then sketched as in Fig. 9. We get a straight line. But we know if the weight is too great the 

elastic band will snap. So it is not possible to assume that the graph will continue as it seems 

to do from the beginning. 

 

FIGURE 9. Graph of a stretched rubber bandôs length as the load is increased. 

Example 4: Carbon dating. 

The graph in Fig.10 gives a way of finding out how old objects are by carbon-14 content. 

All plants, animals and people absorb carbon-12, normal carbon, and to a much less extent, 

carbon-14, which is radioactive. While alive, both carbons exist in the same ratios in plants, 

animals and people. After death the level of normal carbon remains constant, but carbon-14 

decays. In fact, carbon-14 has a half life of 5,700 years, that is, one-half will decay in 5,700 

years, half of the rest will decay in another 5,700 years, etc. The amount of normal carbon in 

the specimen determines how much carbon-14 there was originally, so the remaining carbon-

14 determines its age. The following graph illustrates the relationship between the percentage 

of the carbon-14 of the original remaining to the age. For instance, if just 5 percent of the 

original carbon-14 remains the specimen is 24,640 years old, 

 

FIGURE 10. Carbon-14 dating. 
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§4 Equations and Geometry 

Descartes then had this brilliant idea: He set up a way of associating equations with curves. 

Consider the equation y +  x
2
 = 0. This is satisfied by a variety of values of x and y. Descartes 

idea was to consider all such values (x, y) that satisfied this equation and plot the 

corresponding points. For instance, (2,- 4) and (3,- 9). The collection of all such points form a 

curve as shown in Fig. 11. This also called the graph of the equation 

 

x
y

-4 -3 -2 -1 0 1 2 3 4

-15

-10

-5

0

 

FIGURE 11. Graph of y + x
2
 = 0. 

In this way Descartes set up a relationship between equations and curves in the plane. 

Depending on the problem, it allows us to use geometrical techniques to assist in solving 

algebraic problems and algebraic techniques for solving geometrical problems. This study 

initiated by Descartes is known as analytic geometry or as coordinate geometry. 

But first, let us consider some typical equations and the corresponding graphs. 

Example 

2x + 3y = 2. We consider the set of all points with coordinates (x, y), which satisfy this 

equation. To do this we draw up a table of values. We chose various values of x and then find 

the corresponding value of y to satisfy the equation. For instance, for x = 0, the equation 

2x + 3y = 2 simplifies to 3y = 2 and hence y = 2/3. We do the same for various values of x 

and in this way we obtain the table below: 

x y 

0 2/3 

1 0 

2 -2/3 

3 -4/3 

-1 4/3 

-2 2 

-3 8/3 

Next, we plot these points and try to join these points with a smooth curve. The result is 

illustrated in Fig.12. 
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FIGURE 12. The graph corresponding to 2x + 3y = 2. 

In fact, it turns out that the graph of any equation of the form ax + by + c = 0, with a, b, c real 

numbers, is always a straight line (excluding the trivial case a = b = 0). Thus, the graph could 

have been more quickly drawn by joining any two points (x,y) which satisfy the equation. 

The next example is the graph of x
2
 + y

2
 = 1. The corresponding curve is a circle, radius 1, 

centre at (0,0), as shown in Fig. 13. As in the above example, this can be verified directly by 

constructing a table of values and plotting the points. 

 

 

FIGURE 13. The graph of the equation x
2
 + y

2
 = 1. 

 

§6 The Greeks and their curves 

Two thousand years ago the Greeks studied the straight line, the circle and a group of curves, 

which are related to the circle, namely the conic sections. They studied these curves for their 

own sake and their work, certainly for about 2000 years, could only be described as entirely 

intellectual, without any application - useless knowledge. All this was to change. These 

curves became of fundamental importance in understanding our universe, and in Satellite TV. 

What is a conic section? A conic section is the intersection of a double cone and a plane, see 

Fig. 14. When we talk about the cone we mean a hollow cone, something like a double 

dunceôs cap made out of paper. So the intersection with a plane produces a curve, 
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FIGURE 14. The intersection of a plane and a cone 

gives a curved line, which is called a conic section. 

These curves were given the names parabola, ellipse, and hyperbola, depending on how they 

intersect the cone, but we shall not elaborate. We simply have drawn examples to illustrate the 

different types of curves in Fig. 14. In Fig.15 and Fig. 16 we have drawn the curves without 

showing how they arise from the intersection of a plane and the cone. 

If you have a torch that has a well-formed cone of light coming from it, you can shine it in a 

darkened room on the ceiling, and by positioning it in different ways, you will get the circle, 

the ellipse and part of the hyperbola. 

One type of these conic sections is easily drawn as follows. To draw a circle we can take a 

piece of string and tie its ends together, thus forming a loop. Put a nail in a board and holding 

a pencil in the loop at maximum extension, you can then draw a circle. If you take two nails, 

positioned at a and b, separated of course, and put the loop round the nails, again you can 

draw a closed figure, which is called an ellipse. Thus in this case there are two key points, the 

nails, and each of these is called a focus of the ellipse. (The plural of focus is foci). 

 

FIGURE 15. Ellipse with foci at a and b. 

A property of the ellipse is that if you shine a light from one focus to the circumference on the 

ellipse (for instance, if the circumference of the ellipse is in the form of a mirror), the light 

will be reflected in the other focus, as illustrated in Fig, 15. Here the straight line we have 

drawn from a is shown reflected in the circumference and then it passes through the other 

focus b: 

An example of a parabola is the curve that a cannon ball traces out when shot out. See Fig. 16. 
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FIGURE 16. A parabola, the path of a cannon ball. 

§7 Equations and conic sections 

As mentioned above, there is an association between equations and curves. Here is a short 

table with some examples. 

 

Equation Curve 

2x + 3y = 4 Straight line 

x
2
 + y

2
 = 1

 
Circle with centre at O and radius 1 

x
2
/4 + y

2
/9 = 1 Ellipse 

xy = 1 Hyperbola 

The table gives examples of what are general results. We state these results without proof. 

The first is that any equation which involves only x and y and numbers, such as 2x + 3y = 4 

(such equations are called linear) is a straight line.  

Even more remarkable is the following theorem: 

It concerns equations which involve only x, x
2
, y, y

2
 and xy and numbers, the so called 

quadratic equations, for instance, 7x + 4x
2
 +8y - 9y

2
 + 17 = 0.  These differ from linear 

equations in that they must involve at lest one term which is a square or else the product of x 

and y.   

Then the theorem states that the graph of such an equation will correspond to a conic section. 

This is a very striking result. That an equation with x and y appearing only to the powers of 1 

and 2 should have anything to do with taking a section of a cone is remarkable. 

§8 Applications of coordinate geometry 

The first major application of the conic sections occurred between 1609 and 1616 when the 

astronomer Kepler discovered three important rules of motion. The first was that the planets 

moved in ellipses with the sun at a focus. Moreover, the paths of comets like Halleyôs comet 

also have the form of an ellipse. 

Using his three rules of motion and his law of gravity, Newton was able in 1687 to show that 

Kepler's laws were a consequence. He used the connection between equations and curves that 

we have described above. The same method is used to determine the orbits of satellites. The 

reason why we can watch TV in so many different places is a consequence of these 

calculations. 
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The reflecting property described in §6 is important for the antennas that are used to send and 

receive the TV signals. Newton had the idea of using the reflecting property of the parabola to 

design a telescope. The parabola has a focus, similar to the ellipse; but only one, not two. And 

the reflecting property means that parallel light will be reflected into the focus. The same 

property holds for radio waves. This is the basis of the reflecting antenna, the so-called 

parabolic antenna. The TV programs that are sent all round the earth use the same principle. A 

more down to earth application is in the reflectors for headlights in cars, in torches and in 

spotlights. 

 Another important application of this reflecting principle is medical. Lithotripsy eliminates 

the need for surgery to remove kidney stones. To pulverize the stones the lithotripter uses 

shock waves, which pass harmlessly through soft tissue. The patient is placed in an elliptical 

tank of water with the kidney stone at one focus. The shock waves are generated at the other 

focus. The procedure lasts about an hour during which time about 8,000 shock waves are 

administrated. 

The property of reflection from one focus to the other also explains the workings of so-called 

whispering galleries, such as in St. Paulôs Cathedral and in the rotunda of the Capitol in 

Washington, where, if a person stands at one focus his voice is ñreflectedò to the other focus. 

Finally to emphasise the importance of conic sections, even the paths of electrons rotating 

around the nucleus of an atom are ellipses. 

 

§9 Solved Problems 

1. Draw the graph of y = x + 3. 

Solution. The graph of any equation of the form y = ax + b is a straight line. Hence, the graph 

is determined by any two points on the graph. For example, the points (0,3) and (-3,0) are on 

the graph, so it we plot these points the graph is the straight line joining them 

2. Draw the graph of y = 5x. 

Solution. As in the previous example this is the graph of a straight line. Two points which 

satisfy y = 5x, are (0,0) and (1,5), so the graph is the line joining these points. 

3. Draw the graph of y = 5x + 3. 

Solution. A straight line joining, for example, the points (0,3) and (1,8). 

§10 Solving problems in Geometry with algebra and vice - versa 

To find a common solution to two equations, we draw the curves corresponding to each of the 

equations and observe intersections. In Figure 14 we have done this for the two equations, 

y + x = 4 and y - x = 2. 

From Fig. 17 we see that these two lines intersect in the point (1,3). Hence, x = 1, y = 3 is a 

common solution to the two equations. 
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FIGURE 17. Solving two equations with a graph. 

Algebraically, we can solve the two equations as follows: If we add the two equations, we 

have (y + x) + (y ï x )= 2 + 4. i.e., 2y = 6 or y = 3. We then substitute y = 3 in the first 

equation to get 3 + x = 4, so x = 1, which agrees with our first solution. 

A more difficult problem algebraically is to find a common solution of the two equations 

x
2 
+ y

2
 = 4 and y = x

3 
ï x. 

In Fig. 18, the graphs of the circle x
2 
+ y

2
 = 4 and the curve y = x

3
-x have been plotted. 

 

FIGURE 18. Common solutions to x
2 
+ y

2
 = 4 and y = x

3
ïx. 

We can see from the graph that there are exactly two intersections, which are, approximately, 

(1.5,1.5) and (-1.5, -1.5). 

The solutions suggest a bit more. Since for both points the x-coordinate and the y-coordinate 

are equal, we might investigate what happens if we set x = y in both equations. 

If we set y = x in the first equation, the result is x
2 
+ x

2
 = 4, that is, 2x

2
 = 4, and dividing both 

sides by 2 gives x
2
 = 2. Substituting y = x in the second equation gives x = x

3
 ï x, or, 2x = x

3
, 

and dividing both sides by x gives 2 = x
2
, which agrees with what we found for the first 

equation. Thus, it is true that at the common solution, x = y, and x
2
 = 2. Therefore, more 

precisely, the common solutions are (+ã2,+ ã2) and (-ã2, -ã2 ). Note that ã2 is approximately 

1.414, not too far off our estimate from the graph. 

Here we can see the use of geometry and algebra, each contributing to the solution. 
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Chapter 10 

SOLVING EQUATIONS AND GAUSSôS METHOD 

 Back substitution is the essence of this ingenious method. 

§1 Solving an equation 

Consider the following problem: We are designing a budget hotel. An area, 25 meters long, is 

to contain 11 rooms; and each room is to be the same size, say, x-by-3.5 meters. The wall in 

each room is to be ¼ meter wide. What value of x will give the best possible size of each 

room? See Fig. 1. 

 

FIGURE 1. Designing a hotel. 

The number of walls is 10, and these add 10 ×¼ = 2.5 meters to the total. In addition there are 

eleven rooms each of width x, making a total of 11x. Thus the equation we need to solve for x 

is 11x + 2.5 = 25. 

If you remember your school mathematics you will be able to solve this problem straight 

away. Otherwise, try guessing! Our mathematics teacher would have been horrified at this 

suggestion. ñDonôt guess, boy,ò he would say. We now know that he was wrong. Why not 

guess? 

§2 Method 1: Take a guess 

An easy first guess is: x = 1. When we substitute x = 1 in 11x + 2.5 = 25, the left hand side 

(abbreviated LHS) becomes 13.5, while the right hand side (RHS) is 25. So the first guess was 

a bit off, but it was not too bad. The next guess, so as to make the LHS bigger, is x = 2, which 

makes LHS = 24.5.  This is still not quite correct since RHS = 25, but very good for a guess.  
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The next guess, x = 2.5 makes the LHS = 30, which overshoots the mark of 25 by 5, and 

indicates that the actual answer is between 2 and 2.5, but very close to 2, since x =2 undershot 

the mark of 25 by only 0.5, while x = 2.5 overshot the mark by 5. We could continue in this 

way, trying say x = 2.1. 

§3 Method 2: Draw a graph 

We re-write the equation 11x + 2.5 = 25 by subtracting 25 from both sides of the equation, 

thus getting 11x ï22.5 = 0. The problem can be formulated as finding the value of x to make y 

= 0 in the equation y = 11x - 22.5. 

 

FIGURE 2. Solving the equation 11x + 2.5 = 25 by drawing the line y = 11x ï 22.5 

Fig. 2 is the graph of y = 11x - 22.5. The graphical solution to our problem can be obtained as 

follows: 

¶ First, we know from Chapter 9 that this graph is a straight line. The graph can be 

drawn by finding two distinct points on the line and joining them. For the first point 

we choose x = 1.5. Substituting x = 1.5 in the equation y = 11x ï 22.5 we find y = 

-6. Thus the point (1.5,- 6) lies on this straight line. For the second point we chose 

x = 2. Substituting x = 2 in the equation y = 11x ï 22.5, shows that (2,-0.5) is also a 

point on the line. We can then draw the graph by joining these two points with a 

straight line. (There is nothing special about the choices x = 1.5 and x = 2, any other 

choices would have done just as well.) 

¶ At the point where the straight line crosses the x-axis the value of y is 0, which 

means that the corresponding value of x is the value which solves the equation 0 = 

11x ï 22.5. From the graph we observe that y = 0 when x is approximately 2. This 

is a good approximation since when x = 2, y = 22-22.5, that is, y = -0.5. 

§4 Method 3: Do what your mathematics teacher told you 

The method your mathematics teacher might have taught you for solving the above problem is 

based on the principle that equal mathematical operations done to both sides of an equality 

produce a new equality. Using this principle the solution to the problem proceeds in the 

following steps. 


