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PREFACE

This book is intended for:
1. Readers who liked mathematics at school but never studied it further.
2. Young people with mathematical talent.
3. Teachers whare looking for inspirational material for school.

Each reader will study different parts of the book in different ways. Not many are likely to
read every page, but then, not every visitor to an art museum looks at every painting. You do
what you find ejoyable and find the time for; you may even think of coming several times.
Chapters can be read in almost any order. Nor is it necessary to read the whole of a chapter.
Many sections indicate optional material. In particular, the solved problemstemeabpl he

more difficult calculations are often put into the solved problems, and even if one does not
read these, one still gets an understandable account.

The aim of the book is expressed by its title, namely to give examples of mathematics which
is practical and useful in everyday life, examples of beautiful mathematics, and to illustrate
the logical arguments used in mathematics, i.e. proof. Practical topics include approximation
and the use of the powers of 10 notation. Then there is percerdagesstimating various
guantities with simple calculations (Chapter 4), some knowledge of graphs, some probability
and statistics. There is also a chapter on units like Watts and horsepower.

Proof i s demonstrated for iemsandusiogenunibgrst@ r o v i
derive Euclidean Geometry.

There are some beautiful classical resuttsch as examples of a finite Geometry and a
Projective Geometry, the existence of an infinite number of primes, and the irrationality of the
squarerootof 2Fer mat 6s | i ttle and | ast theorems and
less than a given number N, are discussed. Finally, we return to counting but this time
counting infinite sets, and have the striking results of Cantor such as there are gimisny

on a line of length 1 as on a line of length 2.

Much could be added, but we have chosen to be brief in order to present a more easily
comprehendible book. There is much of value and interest anyway.

We have tried as far as possible to previdathematics, which the reader can verify for
himself or herself, and not have to rely on our authority.

The book begins with topics that would normally be discussed in school, and ends with
topics, which would normally appear in a university course athematics. The careful
choice of material and presentation provides an account which is understandable by those who
have studied secondary school mathematics. Because we givecansaified account, the
reader who has forgotten the school mathematiisbe reminded of some of the details.
What is required of the reader is a flexible mind, curiosity, and the sort of patience and
determination that is required to play bridge or chess or solve gvoss or sudoku puzzles.

1 Until you have read the relevant chapters the following is only partly understandable.
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The examples are from défent countries, England or Sweden or the U.S.A. But these are
only examples which are meant to illustrate various methods, and the reader will with their
help apply these technigues to their own interests and needs.

The material in this book is not onigl to us.

There are many brilliant ideas in mathematics. If we can introduce you to some of them it will
be an honor and a privilege.
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Chapter 1

PRELIMINARIES AND A LITTLE FUN

Mathematics begins with a guess, just as naturally as love begins kith. a

81 How to read this book

This is a book for people who choose to read for fun and enlightenment. Doing mathematics
voluntarily means you can pick and choose what you want to do.

Reading mathematics is slower than reading other subjects. You may &xp=ad a page in

a few minutes if you read a novel: with mathematics you can be lucky to read a sentence at
that speed. The subject is concentrated. So do not try to study too much at one sitting, it being
better to learn a little well rather than & badly.

We have laid out this book in the best way for our minds. Since your mind is different, you
may prefer to change the order. You may skip sections you find boring. Do so. But be
prepared to return to them later, when maybe they make more sense.

The chapters are on the whole independent and so can be read in the order you prefer.
There are three main exceptions; Chapter 10 81 to 84 inclusive on linear equations is needed
for Chapter 12 82 on Geometry. Chapter 9 81 on coordinates is needetafiieiCl1 on
functions.

Chapter 8 81 to 84 inclusive on logarithms is needed for Chapter 15 84 on the number of
primes less than a given number.

Solved problems can be skipped at without loss of intelligibility. Among these problems
will be more detailear technical arguments and laving them out will make following the
text easier. One can always return to them later if one feels like it. Many problems are of
interest in themselves. Also often a solved problem can explain a difficulty

Solved problemsre also good for practice. It is more fun and instructive to do them
oneself before reading the solution. Sol v
may find it wuseful to read the book AHow t
in any case, the problems are optional.

9 (153 9
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FIGURE 1. George Pdlya (188Y985), a talented mathematician of the 20th century.
Towards end of his lifedrwas much interested in the teaching of mathematics, see
his book AHow to solve it. o

82 Ask questions

One is sometimes admonished not to ask stupid questions. There are two ways of doing this,
either ask no questions, i.e. give up learning, or else khevsubject so well that you can
avoid asking the stupid questions. In other words, ignore the advice to avoid asking stupid
guestions.

And donét be afraid to estimate or to guess.
to give this advice in saChemistry. You may run the danger of an explosion if you guess
which chemicals to combine, but in mathematics nothing so drastic can occur.

83 Indispensable tools for reading this book

Pencil and paper are essential for reading this mathematics bo@wardher mathematics

book. This is because the best and easiest way to follow an argument is to do the calculations
yourself. Not only must you have pencil and paper to hand, you must use them all the time.
The text in the book you use will give you aelas to what you should be doing. Often it
helps to write the definitions or the assertions in your own hand to absorb and understand
them. We have assumed that enough of what you studied at school either remains or else you
will be reminded of it as youead. If that is not the case, the book may be very hard to read,
since it does not begin from the beginning. However we feel that most people will be able to
cope.

In particular, we hope you remember the use of symbols in mathematics. To write a product
like 34 we usé in between, but if we have represented an unknown number by a symbol
say, and we take twice this quantity, we leave out the multiplication sign and simplyxvrite 2
Thus if one is searching for an unknown quantignd twice this quangtplus 4 is 10, then

this is written briefly as 2+ 4 = 10.

Example of how symbols help understanding:
Here is a party trick. You ask somebody to do the following:
9 Think of a whole number between 1 and 9

10(153 1C
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1 Multiply by 5. Add 3. Multiply by 2.
1 Then think ofanother whole number between 1 and 9 and add it to your total.
1 Give me your answer.

You can then at once tell the person the two numbers. All you have to do is to take away 6
from the total he gives you. Then the tens will be the first number thought dh@minits the

next number. For instance, suppose he thinks of the numbers 4 and 7. The first step he has to
do is to multiply by 5 thus getting 20. To that he adds 3 getting 23. He then multiplies by two

to get 46. Adding 7 gives a total of 53. So iritngl him the numbers he thought of you
subtract 6 to get 47. Thus 4 was the first number he thought of and 7 the second.

How it works is easy to see with the use of symbols

Thus letx andy denote the numbers thought of. Multiplyirdpy 5 gives % Adding3 gives
5x + 3. When we multiply by 2 we get 26 6. We then add y to get 18 y + 6. When we
subtract 6 we get X0+ y. Sincex andy are numbers between 1 andk®ecomes the tens and
y becomes the units.

Another example of how symbols help understating:
This is the hand method of learning the product of two numbers lying between 6 and 10

Baumsl|l agos father used t his met hod for t e:
multiplying numbers lying between 1 and 5 how to deal with larger numbers. Pldte bot

hands in front of you with palms facing. The thumb in each hand represents 6, the next finger

7 and so on, till the little finger which represents 10. To find the product of two numbers, say

7 and 8, place the finger representing 7 on the left harttieofinger representing 8 on the

right hand. Count the fingers touching and those up to and including the thumbs. In this case

5, and count 5 tens, i.e. 50. There are three fingers on the left hand, and 2 on the right hand
which have not been counteMultiply the two and three to get 6, and add to the 50 to get the
product 56. This method helps children to multiply two numbers each lying between 6 and 10.

We can explain how this method works as follows: dleé the finger on the left hand ahd
the finger on the right hand. Then this represents the product afafdr5 +. This is 25 +
5s+ 5t + st

The calculation we do is to count the number of fingers from the touching fingers to the
thumbs and this iss(+ t), and count them as 10se.iwe get 18+ 1Q. To this we add the
product of the remaining fingers, i.e.- 5and 5- t, getting 25 5s- 5t + st

Adding this to the 1€+ 1 gives us 25 +&+ 5t + st, i.e. the same as we got before. .

84 Sets, numbers and infinity

The rumbers 1,2,3, etc., are calletiole numbers.A set is a synonym for a collection: for

i nstance, the collection of al | whol e number
squiggly brackets are a convention for denoting a set. The objedlenmentsof the set are

the whole number s, 1, 2, 3, ¢ and the dots a
forever.

Modern Mathematics explains much in terms of sets, and we will do so as well in this book.

11(153 11
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The set of whole numbers is an infinite set. Ifiyoed to list them in a finite number of steps
you could not. An example of a finite set would be {1, 2, 3}.

The set of all atoms on the Earth, although huge, is not an infinite set. In theory one could list
all the atoms, and after a while the list wbabme to a stop.

For centuries mathematics consisted of the study of numbers and geometry. This has long ago
ceased to be the case, but we will stick to these parts of mathematics.

In addition to the whole numbers, we also have the fractions, numbeis avhione whole
number divided by another, like %. The fractions are also caltexhal numbers. The
rational numbers also include the negative fractions.

The rational numbers can also be expressed as decimal expansions. These can be finite,
orelsenfinite, li ke 1/3 = ,33333¢ But i f a
infinite, then it has a repeat pattern after a while. If we allow these, and all other possible
decimal expansions, both positive and negative, then we obtain the set of B#éraum

These are calledReal Numbers to distinguish them from thémaginary Numbers,

which involve the square root 0fl.

A useful word in mathematics is fAtheorem, 0 w

85 A little fun.

1. Multiplying any two numbers using only the two times table.

We can multiply any two numbers by multiplying solely by 2 and dividing solely by 2. We
illustrate the method by working out 483.

We write the numbers in two columns. The next row is produced by multiplying the
first number by 2 and dividing the second number by 2. We ignore any halves that
appear. We continue in this way till we get to 1 in the flggmid column.

46 33
92 16
184 |8
368 |4
736 |2
1472 |1

We then add all the numbers in the deéind column, whth are opposite an odd number in
the righthand column. The result is the product of the two numbers. Thus in the example
we have chosen, we get

1472 + 46 = 1518 which is the answer.

2. The game of Nim

The game of Nim is played with matches (or tepitks for norsmokers.)

12 (153 12
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There are two players. One arranges the matches in as many piles as desired, with as many
matches as desired in each pile. Each player at each move chooses a pile and takes as many
matches as he or she wants. But each playst take at least one match on every move. At

each move one must restrict oneself to one pile only. The LOSER is the person who takes the
last match.

Now there is a strategy for winning. We take two special cases rather than the general case.
Two piles Nim

If there are only two piles and it is your turn, then if one pile has only one match, take the
other pile away. If each pile has more than one match, then take matches away from the
larger pile to leave two piles with the same number of matchesn your turn both piles

have the same number of matches, then you will lose if your opponent knows the strategy.
Otherwise you can take away only one match from one pile, hoping that your opponent does
not know the method.

One pile with one match andwo other piles.

When there are three piles each with one match, the person to makes the first move loses. So
if there are two piles with one match in each and a third pile with two or more matches, leave
only one match in the larger pile.

If two piles hae more than one match, check the number of matches in each.

Case a) The two piles have the same number of matches in them and this is more than
one match. Take away the pile with one match to get the two pile situation described above.

Case b) The sma#r of the two piles with more than one match has an odd number of
matches. Take matches away from the larger pile so that it has one match less than the
smaller.

Case c) The smaller of the two piles with more than one match has an even number of
matches.

Take matches away from the larger pile so that it has one match more than the smaller.

13(153 13
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CHAPTER 2

SQUARING, CHECKING AND APPROXIMATION

Mathematicians like the rest of us make mistakes. But, being accustomed to
checking, they usually detect their talses before it is too late.

81 Introduction
All of us have learnt the basic skills we need to do many arithmetic calculations.

We are suggesting that instead of letting our skills degenerate, we try to use them every day to
think and make interesting cdosions. It is so seldom that we use these basic skills that we
may now no longer be adept in adding, multiplying and dividing. Many think that does not
matter, we can always use an electronic calculator, and so we can. But there is still a place for
these basic skills, and most important, personal satisfaction in being able to do these
calculations oneself. So in this chapter we will begin by practicing. In these initial sections,
we will also find methods of checking the calculation.

82 Finding a square

When we write (45)we mean 45 times 45. More generallyxiis any numberx® meansx
ti mes it sxeslqfuarWelosayeftause it repxresents t he

There is a quick way of working out the square of a number ending in 5. Thalgemeis:
Remove the last digit, 5, multiply the remaining number, call it r, by r+1 and attach 25. For
instance, to calculate (45yemove the 5, leaving 4, multiply 4 by 4 + 1 = 5 to get 20, attach
25 to get the answer 2025. (Why this method worlexained in problem 11 87.)

Example (995Y. (Some advice: Before reading the solution to an example, work through
the problem yourself and read the solution only if you get stuck or wish to verify that
you are correct.)

Solution: Take away the 5 to g@® (r in this case), add 1 to get 100 (i.e. r + 1), multiply 99
and 100 to get 9900, and attach 25 to get the answer of 990025.

Of course you can calculate this result by multiplying 995 by 995, using the usual method of
multiplying numbers, but this metl is simpler and quicker.

14 (153 14
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You may say, why should | bother with such a calculation. Is that not the reason for
calculators? Yes, you are right. But using a calculator is tantamount to letting some authority
tell you the result. Which is a pity, since imamatics is the one subject where you can rely on
yourself, and not on authority.

83 Checking
Casting out nines
In 82 we calculated the square of 995. Can we check the result?

It may seem over the top to bother about checking in this particular caset snoat a very
complicated calculation, but by discussing what happens in such a calculation we are
preparing the ground for how to handle much more difficult problems. Mathematicians are
keen to check their calculations, because often other thingadlepeghem, and one wants to

be absolutely certain. It is also surprisingly easy to make mistakes, even using electronic
devices. Repeating a calculation is also a good method of checking, but often one tends to
repeat the same mistakes when doing thergkcalculation.

If the following check fails, we will know that the result is false. If the check succeeds, the
result may nevertheless be wrong. But this check is useful for all sorts of arithmetic
calculations. It is called the method ofsting out ning But first, we must define the
checksunof a number. We can illustrate by 867. We begin by adding the digits of 867: 8+6+7

= 21. Since the sum is greater than 8, we repeat the process with 21, that is, we add the digits
of 21 to get 3. Since 3 is lessath 8, the checksum of 867 is 3. One further point, if the
number 9 occurs anywhere in our calculations, we replace it by 0. For example, the checksum
of 9 is 0. Also, the checksum of 291 is 2+0+1, or 3,which we obtained by replacing the
middle digit, 9, by0.

The method is based on the following fact: If the result of a product is correct, then the
product of the checksums of the factors must be the same as the checksum of the answer. As
an example of the method, suppose we are to check that the prod@&, 35805. We begin

by replacing the numbers 35, 23 and 805 by their checksums, 8, 5 and 4, obtained by adding
their digits. (For instance, 805 is replaced by 8+0+5 = 13, but since 13 is larger than 8, we
further replace 13 by the sum of its digits, 143=Multiply 8 and 5, the checksums of 35 and

23, to get 40. Add the digits of 40 to get 4. Since this matches the checksum of 805, the check
is positive, and we have increased our confidence in the result, though the accuracy is not
guaranteed.

The reasorthe method is called casting out nines is the rule that to obtain the checksums all
9s in the calculation are replaced by 0. For instance, applying the chec@=t®19gives 60

for the product, while the answer has checksum 8 + 1 = 9 which we repl&celThys the
check works.

We check the example in 82: 9%95 i s supposed to be 990025.
to get for the sum of the digits 0 + 0 +2 + 5 = 7. The sum of the digits in 995 with 9s replaced
by 0 is 5, and 5x5 is 25 which has checksunthé checksum of the answer. This increases
our confidence in the result.

(Chapter 15 87 gives an explanation of why casting out nines works.)
Example
Use the method of casting out nines to check whet#e88/42,712.
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Solution: Sum of digits of 74 is 1and the sum of digits in 11 is 2. Sum of digits in 38 is also

11, which becomes 2 when we sum its digits. The product of the two checksums is 4, and this
should agree with the check on the given answer. The sum of the digits in the given answer is
2, namey 2 +7 + 1+ 2 =12, but the sum of the digits of 12 is 3, not 4. Tha887¥ not

2,712. Indeed, a more careful calculation gives the correct answer of 2,812.

Casting out 9s can also be used to check a sum of numbers against the total. For instance, to
check that 75 + 236 = 305, replace 75 by its checksum, 3, and 236 by its checksum, 2. The
sum of these two checksums is 5, which should be the checksum of 305. However, the
checksum of 305 is 8, so there is a mistake in the addition.

Remark

The Welsh matBmatician Jim Wiegold used to emphasize the importance of checking by his
code of practice: Whenever he used a result he felt bound to check the proof of the result so as
to ensure correctness of the previous result as well as his own. This is desfaitd that a

referee has checked all articles printed. However, even Wiegold has not been able to carry out
his code of practice always. The amount of checking is just too much in some cases.

Two Quick Checks

A very crude check of a product of two numberebtained by counting the number of digits

in each factor and adding. Suppose the sum of these digits is S. Then the product should have
either S or S 1 digits. In 82 we claimed that 285 was 2025. Thus the product we have
calculated has 4 digits assihould. Although this is a very crude check, it does bring to light
errors we might otherwise miss.

A similar but more accurate method is to use only single digits. We again take the example of
the square of 45, which we calculated in 82.

(45Y = 45345, and this is approximately 580 =2000. We chose this approximation by
increasing 45 to 50, i.e. a whole number of tens and then reducing the other factor 45 to 40,
arguing that as we had increased one factor, we should compensate by reducing the other. Of
course multiplying 50 by 40 is easy. The result 2000 is strikingly close to the result obtained
in 82, that is, 2025. These two checks, casting out 9s and approximating, give further
evidence that the method in 82 both works and probably there is nossensiake in the
calculation.

84 Powers of 10

We have already explained in the meaning of 49 the product of 10 and itself, i.e. 100.
Similary1®i s t he product of three 106s, and so o
10°= 10 x10= 100

10°= 10x10%10 = 1,000

10'= 10x10%x10 x10 40,000

10°= 10x10 x10x10x10 = 100,000

10°= 10x10x10%x10%10 x10 = 1,000,000

10’= 10x10x10x10x0x10x10 = 10,000,000

and so on. These are called the powers of 10. A useful wesgh@ent the exponent of £0
is 5; that ofL0’ is 7. Note that 10is 1 followed by five Os, 10is 1 followed by seven 0s and
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so on. It seems reasonable to definé tbobe 1 followed by one 0, i.e. 10, and’ &3 1
followed by no Os, i.e. 1. Thus'i® 10 and 16= 1.

Multiplying these powers of 10 is easy: one simply adds therexgs. Thus 1810°
=10"°= 10"

You will notice that an advantage of this way of writing is that it is much easier to
comprehend, for instance, ifather than 1,000,000,000. Even more important, this notation
gives one a way of expressing very lrgumbers. Problem 8 in 86 illustrates this.

FIGURE 1. Archimedes (287BC 212BC). One of the greatest mathematicians of all
times. He had raalternative of the power of tens notation to denote large numbers
which enabled him to calculate the grains of sand in the entire universe (as known
then).

A very useful method is to express a number as a product of a number lying strictly between
10 and1 and powers of 10. Thus we can express 887 ag BX87The number 64789 is
expressible as 6.47820°. The exponents make it very easy to compare these numbers.
Obviously the one with exponent 4 is very much bigger than the one with exponent 2. Also, if
the numbers were written out in detail, it could be rather awkward to perform calculations
with them. For example, to square 65,000, if we rewrite this as 85thkdanswer, using our
previous formula, is easily seen to be 4225xufhich can also be exgssed as 4.225xdr,

without exponents, 4,225,000,000.

The advantage of this calculation is that it is so simple to do; it also gives us a very good idea
of the powers of 10 that are in the answer. As such it is a useful test. With it we will certainly
discover large errors.

Example
(995¥. 995 is approximately31.0®, and so the square is approximately

13102 1310° = 1310°. If we look at the example in §2 we calculated (896)be 990025,
which is equal to 9.90023.0> This is very close to f0
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Negativepowers of 10

Positive powers of 10 are useful for large numbers. Negative powers are used for small
numbers. For instance, 1neans 1 divided by £0i.e. 1/100,000. In general the same rule
applies that multiplying by powers of 10, whether positiveegative or mixed, we simply
add the exponents. Thus

10°3 108 10°= 10%.
Rounding

The number 3.467 can be rounded to 2 decimal places by changing it to 3.47, i.e. we drop the
last digit and if it is 5 or larger add 1 to the second decimal. If theligists less than 5, we
simply drop it and leave the other digits unchanged.

Examples

To three decimal places we replace 18.8244 by 18.824, to 4 decimal places replace 5.67185
by 5.6719, to one decimal place replace 299.95 by 300.0. In this last exammep the 5
and add .1 to 299.9 thus getting 300.0.

In Science and Engineering most numbers are not exact, being the result of measurement,
which is always subject to some inaccuracy. In the scientific notation that we have discussed
above, the conventiois that all digits given are correct, with the possible exception of the last
digit, which could be 1 larger if the number has been rounded up. Thug 508 T8eans that

the number lies between 5.672%° and5.6784 10°.

85 Accuracy

Taking 10 instead of4 is an approximation. The error is 4/14, i.e. approximately 28%. So
when we consider a product and approximate by taking the nearest single digit numbers we
can incur large errors. When we take the product of two such numbers the errors compound.
For ingance, to calculate 323, if we approximate by 2@0 = 200, instead of the correct
product of 322, the error is 122/322 i.e., an error of about 40%. The method of approximating
by taking a single digit is subject to considerable errors. Often it isisgéiful to do so, but we
recommend using two digit numbers to approximate, thus getting a much closer
approximation. We recommend this because multiplying two digit numbers is relatively easy.
In fact, if one uses the method advocated by Trachtenbergifmeban Chapter 17) one can

write down the answer in a few seconds.

In working out an approximation multiplying two numbers, note that the error is
approximately the sum of the percentage errors in each of the factors as explained in 2 of 86.
In the examp above, approximate 123 by 16 20, the percentage errors of the factors are
28% and 13%, so the error in the product is approximately 41%. In the actual calculation we
found an error of 40%.

86 Solved Problems
1. Practicing squaring a number that ends irb. Find the squares of 85, 75, 125.

Solution: (85) : Drop the 5 to get 8, add 1 to what remains to get 9. Multiply 8 and 9 to
get 72. Attach 25 to get the result of 7,225.

(75 : Drop the 5 to get 7, add 1 to what remains to get 8. Multiply 7 and 8tt66g
Attach 25 to get the result of 5,625.
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(125Y : Drop the 5 to get 12, add 1 to what remains to get 13. Multiply 12 and 13 to get
156. Attach 25 to get the result of 15,625.

2. Checking by casting out nines Find 82x36. Check by the method of castingut
nines.

Solution: 828 36 = 2952 by direct calculation.

To check we sum the digits of the answer replacing 9 with a 0, getting2 +0+5+2 =9
which we replace by 0.

The check for 82is 8 + 2 =10, 1 + 0 = 1 on adding the digits of 10. The checkifoB 36
+ 6 =9, which we replace by 0.

We multiply the check digits for 82 and 36 to g&0Xx 0, the same as the check digit for
the answer. So our check does not indicate an error.

3. A quick check. Check problem 2 by checking the number of digits.

Solution: We add the number of digits in each factor: 82, has two digits and 36 has two
digits. The answer should have 4 or mayhel4= 3 digits. In fact the answer 2,952 has 4
digits.
5. Single digit check. Check problem 2 by replacing the product by one thisingle digit
numbers.

Solution: To calculate 8236 we replace 82 by 80 and 36 by 40, the product is 3,200,
which agrees reasonably well with 2,952.

6. The scientific notation. In the scientific notation, what is the meaning of B30"?

Solution: This means 7.5 times TQwhich is 1 followed by four Os, i.e. 10,000. Furthermore
the result lies between 7 480" and 7.53 10",

7. Powers of 10. Use powers of 10 to multiply 2.50" by 3.1 10°.

2.583.1=7.75.
10%310° = 10’ and so the product is
7.7% 10

8. Powers of 10 continued. Estimate the volume of a sphere with center the earth and
extending to the moon. (This example illustrates how easily the powers of ten notation
can handle very large numbers. Indeed, without the powers of ten notation we could not
even give an answer.)

Solution: The volume of a sphere of radius r ip #/3 The moon is approximately
1.6 10° km. So the volume isp{1.6)° 3 10'%3 = 17.15® 10'®= 1.7157 10" km°.

9. Negative powers of 10. What is the meaning &f>?
10°* means 1dllowed by 3 zeros. Idmeans 1/1b= 1/1000 = 0.001.
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10. Errors. Calculate the percentage error in the calculation in example 5 above. Does it
agree with the assertion that the error is approximately the sum of the percentage
errors?

Solution: Replacing82 by 80 gives a percentage error of (2820, i.e. approximately

2%. Replacing 36 by 40 gives a percentage error of 4186) i.e. approximately 11%,

the sum gives an error of approximately 13%. The actual error in the answer is less than
(3/32F 100,i.e. approximately 10%. This agrees well with the calculated error.

87 Optional items
The method of checking modulo 11

1. There is another useful method of checking which we can explain by means of
problem 2 of 86. This is 8236.

For this check, we add thiest digit to the third digit and then add the result to the fifth digit
and so on. We then add the second digit to the fourth digit and then add the result to the sixth
digit and so on. We then subtract the second sum from the first to get our chdxk.num

For instance, 93,546 gets check number (6 + 5# @)+ 3) = 20i 7 = 13, which is then
replaced by 3 1 = 2. Sometimes the check number will be negative, for instance the check
number of 82 is 2 8 =- 6. In such a case, we add 11 to get a pasitumber. So 82 which

had check numbér6 has check number 116 = 5.

Our problem is 8236. The first factor 82 has check number 5 as we have just explained. The
other factor is 36, which has check numbéi36= 3. We then multiply the check number of

the first factor by the check number of the second factor to get 15, which is further replaced
by 57 1 = 4. In problem 2 the answer was 2,952, whose check number is (X(2+5) = 4,

which agrees with our previous check digit. (See Chapter 15 86 pr@dlenan explanation

of why this method of checking works.)

2. Demonstration of summation of percentage errors in a product

The percentage error in a product is approximately the sum of the percentage errors in
each approximation

Solution; Before givingthe explanation we note that the product of two small numbers is
very much smaller than each of the individual numbers. For instance, if we multiply .01 by
.02, the result is .0002, which is considerably smaller than both .01 and .02. So the product of
two small numbers can be neglected if we are looking for an approximate result.

Suppose now that we are multiplying two numbers, n and m, by approximating to n by
n +aand to m by m + b. Our approximate answer will then be (# +a) + b).

[As an examplesay we are multiplying 2.9 by 4.8. Suppose we usen=2.9anda=.1,and m
= 4.8 and b = .2. Thus instead of2488 we take 35.]

The difference between our approximate answer and the correct andwenyiil be

(n+af (m+b)-n®m=nb + ma + ab, hich is approximately nb + ma, if we assume that a
and b are relatively small, and so ab can be neglected by the remark at the beginning of this
solution. The percentages of error in the approximations are¥a®() and (b/m)® 100 and,

for the product, (b + ma)/(nm)3 100. Finally, (nb + ma)/(nm§ 100 = b/n? 100 + a/f 100.

That is, the sum of the percentage errors of each of the factors, which is what we were to
prove.
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[If we repeat the above argument using the example we have chosef 482 ®e havehe
difference between our approximate answer®# 3 12 and the correct answer 248 will

be (2.9 + 1P (4.8 +.2)i 2934.8=29 .2+ 4.8 .1 + .8 .2, which is approximately 292

+ 4.8 .1 since .2 .2 can be neglected. The percentages of error inp@gimations of the
factors are (.1/2.8)100 and (.2/4.8)100 and, for the product, {$92+4.8 .1
2.9%4.8})3 100 = (.2/4.83 100 + (.1/2.93 100, that is the sum of the percentage errors in
each of the factors]

3. Prove the quick method of squaring a numbeending in 5 described in 82.
Note that 95 =910 + 5. In general a number ending in 5 can be written 10n + 5. Thus
(10n + 5% = (10n + 5) (10n + 5) = 106m 50n + 50n + 25 = 100{A n) + 25.
Since (f + n) = n(n + 1), the result follows.
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Chapter 3

MATHEMATICS AND COMPUTING

This chapter is quite diffent from the others. Whereas most of what appears in the rest of the
book will be correct in thousands of years, much of what appears here, and especially the
specifications, will be out of date probablgfbre the book is published.

81 Bytes and bits

Computersd memories are specified in bytes.
number or aletter of the alphabet or a punctuation mark. The computer has a very limited
vocabulary. It understandsly 0 and 1. This is called a bit. A byte consists of 8 bits.

The computer has two types of memory. The first is called RAM memory, and stands for
random access memory. It is the memory that the computer has for calculating and thinking,
and coresponds to what we would normally use a sheet of paper for our calculations, which
can then be thrown away. This, for instance, we would normally use for recording a
telephone number when somebody phones. Later on we would transfer this to a telephone
list, which is kept. This corresponds to the memory on the hard disc of the computer.

The byte is a small unit, and we have a number of other units to describe the memory capacity
of a computer. A kilobyte is 1000 bytes, a megabyte is a million bytea gigabyte is one
thousand million bytes. One thousand million is a billion and so a gigabyte is a billion bytes.
It is not unusual for a computer to have 200 gigabytes of memory, i.e. it has more characters
that it can remember than there are peapl the world (6 billion.) With such a memory, it

can remember 5 words describing each person in the world.

82 Turing Machines

The Turing Machine is a theoretical model of the computer. It is a very simple device, but
then the computer is also a vesiynple device. A Turing Machine has a infinite strip of
paper. It can make a madn the paper or delete a mark and then move one position to the
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left or one position to the right. It can also be in a number of states, and depending on its
state, it wil do other things.

Perhaps an example of how the Turing Machine adds will help. A Turing Machine to add has
two states, State A and State B.

Initially it is given two numbers to add. The two numbers are indicated by a number of
marks. There is goace in between them. For instance, 5 + 3 will appear on the infinite strip
as follows:

The tape is read at the beginning by the machine in state A. If in this state the machine sees a
mark, it moves one space to the right. It then rélaglsiext item and if it is a mark it moves

one step to the right again. If it sees a blank it moves one step to the right. It now changes to
state B. If it sees a mark it moves one step to the left and makes a mark and then moves one
step to the right aherases the mark. It then moves one step to the right and continues. If it
sees a blank it simply stops. The result is of course that all the marks are now all together and
there are now eight of them, and so the Turing Machine has added the two s\torderthe

total of eight.

83 Speed of operation

From this description of the Turing Machine you get the impression that the computer is not
very smart. Of course the Turing machine is only a theoretical model of the computr, a nd the
computer works copietely differently.

Perhaps a more usful way to think of the computr, is that it is a device that carries out thde
instructions of algorithms. An algorithm is a step by step procedure. At each step the
algorithm tells one exactly what one has to ds. an example we will consider the algorithm

of finding the highest common factor of two numbers. This is the largest number which
divides both numbers exactly. For instance, the highest common factor of 54 and 30 is 6.
This is easy to see by dividiige numbers mentally. A simple algorithm for doing this is as
follows:

We prepare two columns. In the first row we write 54 in the first column and in the second
we write 30. If the two numbers are the same the highest common factor is that common
numker. In this case of course 30 is the least number, and we write it in the same column in
the new row. We subtract it from other number and place that in the same row under itself.
We continue in this way till we get two equal numbers in a row. Tleishifghest common
factor.

Thus we have in this example
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54 30 (Begin with the two initial numbers.)

24 30 (30 unchanged and subtracted from 54.)
24 6 (24 unchanged and subtracted from 30.)
18 6 (6 unchanged anibsacted from 24.)

12 6 (6 unchanged and subtracted from 18.)
6 6 (6 unchanged and subtracted from 12.)

As the two numbers are now the same, that is the highest common factor.

As the computer is limited to carrying out suchdabus processes this agaam suggests that it
is rather stupid. How come then it is so effective.?

The answer lies in its ability to do each step incredibly fast. Typically performance is
measured in giga cycles per second, i.e. a billion times pendecbhe word hertz after a
famous physicist means cycles per second. Thus 2 gigahertz is a typical speed for computers.

The electricity in your house has a frequency of 50 or 60 hertz, radio waves are measured in
kilocycles or at most megacycles. Pecend. The more hertz the faster the computer can do
calculations. So the computer is outstandingly clever because it does everything incredibly
fast, even though it uses quite | aborious me

84 Will the computer replace the mathematician?
Thishas already occurred in some respects.

Many people do not calculate the sum of or the product of two numbers, they use a pocket
calculatior. At most shops nowadays the assistanct taking your money does not need to
calculate how much change to give yothis is done automatically by the cash register. Nor

does an accountant nowadays need to be quick and accurate at adding numbres, he or she
simply uses a computing program which does all the adding automatically. Similarly the
payment clerk, does not e to calculate your tax, it is all done automatically by the
computer program.

At University the first two parts of mathematics that are usually studied are Calculus and

Linaear Algebra. There are many computer programs that can do all that atcidget san

do and more quickly and more accurately. Although students still study these two subjects, it
is surely only a matter of time before the subjects will be modified and at the very least, much
of the techniques and methods will prove to be redondnd will not be studied. How far

this will go is hard to say. Att the moment, most mathematics lecturers have a built in

tendency to teach the subject very much in the old way. But time will certainly change this

and we can expect the computer taised much more

Just how much we can leave to the computer is hard to say. We must avoid the danger that
after a while there will be nobody who really understands the principles and we simply rely
on the computer as an oracle. And of course there arg gobe times when the computer is

going to be wrong. Either because there are bugs in the program (problems and conflicts that
arise which nobody thought of at the time) and also because conditions may have changed and
so are no longer applicable.
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In this book we stick mainly to our own understanding, and do not rely on authority,
whether it be computers or famous professors.
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Chapter 4

FERMI PROBLEMS

To scribble a few figures on the back of an envelope and yet get a reasonable
approximation to something whose value you have no idea about, sounds a bit
|l i ke cheating. It isndét. | tds a Fermi <cal

The Nobel Prize winner Enrico Fermi was a physicist who had great skill in estimating with

little information. For instance, as a standaré gut i on he woul d ask his ¢
piano tuners are there in Chicago?0 With ing
estimate is depends on the skill of the estimator. At the first ever explosion of a nuclear bomb
Fermi noted how a pieagf paper had been blown away by the blast, which was many miles

away, and produced very quickly an estimate of the yield. His result was remarkably accurate.

As another example of his methods, knowing the distance between Los Angeles and New
York and thetime difference, we will be able to estimate the circumference of the earth.

In this chapter we will solve some Fertgpe problems. The idea is to get numerical values

with very little information, and, of course, with results that are only rough appativims,

For instance, one of our calculations will be an estimate for the weight of the earth. After our
calcul ation we will be able to replace a vag
the remark that the earth weighs approximately so redngrams. This is relatively easy to

check against published figures, and it will turn out that our rough calculation is out by a
factor of 2. But this is much more precise
great deal 0.
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FIGURE 1 Enrico Fermi 1901-1954). Nobel Prize in Physics 1938

Most of the examples below can also be checked in reference books, which enables us to see
the advantages and the linitans of our calculations. But there are many cases where there is
no reliable answer, and then the Fermi calculations give us guidance.

To simplify the calculations, it will be useful to express numbers using powers. ¥¥/e.0
remind the reader of thesewpers, which were discussed in Chapter 2. By &6 mean 10
multiplied by itself three times, or 1000. Generally, for any whole nump&d means ten
multiplied by itselfx times. For example, 1@neans 1 followed by seven Os, i.e. 10,000,000,
and 3.8 10’ means 3.8 multiplied by 10,000,000, i.e., 38,000,000.

Thexin 10%is called an exponent. As we explained previously when we multiply powers of
10 we simply add the exponents, and if we divide by a power of 10, we subtract the
exponents, e.g. 1010° = 10°, and 16 divided by 18is 10° 2 = 1¢".

81 Weight of a baby

Assuming that a man of 2 meters height weighs 100 kilograms, how much should a baby 50
cm high weigh? Since the baby is a fourth of the height of the man, as a first guess one might
divide 100 kilos by 4 to get 25 kilos. This is clearly too naive, since weight depends on
volume, and the baby is not only shorter, it is also not as wide. Moreover, among many other
considerations, skin and bones are less dense. To get a better approxim#iohttko solid
rectangular boxes, one of which is efioarth the length, width and breadth of the other. The
volume of the smaller one will be (174} 1/64th of the larger. If the same reasoning applies

to the baby, its weight should be 100/64, or appnately 1Y% kilos.

This answer shows both the weaknesses and strengths of this type of calculation. Everybody
knows that a 50 cm baby is likely to weigh about 3 kilograms: twice as much as our estimate
of 1% kilos. However, with very little effort we havétained a rough value, which is
somewhere near the right answer. Clearly we should not expect this simple approach to give
us an accurate result. Nevertheless, it has provided us with a rough idea of the result.

There is another possible approximation, ekihis based on the body mass index. This is a
way of checking on being underweight or overweight. The body mass index is obtained by
dividing the weight in kilograms by the square of the height.
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For instance, consider the man who weighs 100 kilos and igiglat of 2 meters. The square

of his height is 4 and so the body mass index is his weight divided by 4, that is 25. And
indeed, 25 is given empirically as the maximum body mass index for a person not to be
overweight.

If we use this method for the balwith its weight denoted by w, and its length 0.5 m, then,
since (0.5) = 0.25, the body mass index for the baby is w/0.25. Assuming that w/0.25 = 25,
the maxi mum for the i deal body mass i ndex
kilograms. Again, we areome distance from a reasonable result.

One can regard these rough calculations as, at least, giving us some quantitative information.
This might be sufficient for our needs, but it will often be just the first step in trying to get a
useful result.

82 Number of people in the world

There are something like 200 countries in the world, and Great Britain has some 60 million
people, i.e. 10" people. There are other countries much larger, like the USA, Russia, China,
India, but many much smaller Assuming tlait on average, 200 countries have half the
population of Great Britain, this would make the total population of the world about

2008 32 10" = 6 10°. This very crude calculation has given the correct result.

83 Circumference of the earth
Enrico Fermi came uwith this clever way to deduce the circumference of the earth.

The distance from New York to Los Angeles is approximately 5,000 kilometers, and the
difference in time is 3 hours. Since the earth is divided into 24 time zones, the distance from
New York to Los Angeles corresponds to 1/8 the circumference of the earth. Hence, his
estimate for the circumference of the earth &5@)0=40,000 km. The equatorial
circumference is in fact 40,074 km. Note that the circumference varies as the earth is not a
perfed¢ sphere.

Fermi 6s argument is very much the same as tF
about 240 B.C., who chose Aswan and Alexandria in Egypt instead of New York and Los
Angeles, and came to a result of a little over 40,000 km. His methetased on the relative

position of the sun at noon in the two places.

84 Maximum number of inhabitants on the earth

The radius of the earth, r, is abo16® km so the surface area of the earth is given
approxi mat el y B(he surfaee areaoof ansphere of eadius ) i.e.

4p3(36310°) = 45210° km = 4521Fkm>. However, since 70% of t
water, this leaves 30% of the area on dry land, that is, approximateho® 50° m?.

Then if we allow 100 mof space for each person, this comes to a maximum &fla‘5
people.lt is interesting to compare this figure with the actual number of people inhabiting the
earth today, something liké 60°.

85 Viability of running a shop

Supposeyou wish to earn a net income of £20,000 per year. Working a whole year with 40
hours a week, and 50 weeks gives 2,000 hours. This means that you need to make at least £10
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per hour. However, it would be foolish to regard that as sufficient, becauseatbeabvays

extra expenses. So we assume that what is needed is £20 per hour, just asking double since we
do not have any better idea. Assuming that the profit margin is one third, we will need to sell
some £60 per hour, or £5 per five minutes. This seathemr optimistic so we conclude that

the profit margin must be higher, say 50%. With this profit margin you can reduce your
average hourly sales to £40, or £3.50 per five minutes.

Of <cour s e, -off eersiacd mcreasing yoar griees may reisulewer customers.

86 General Comments on Fermi calculations

It would be foolish to use these rough calculations as being correct conclusions. But it is
remarkable how often they give one quite a good idea.

It is a sobering thought that often the figuthat are quoted by the authorities have been
made by similar calculations. Your own calculations can give you some reason to agree or
disagree.

Indeed, in general when you are given some official number, you should always add in your
mind plus or minus Z&. We suggest this margin of error because we know that usually it is
not possible to give a very exact number. There are always errors. It is also not uncommon for
people to err in a direction that makes them look better.

It is important to regard a Ferroalculation as the first stage in a more detailed investigation.
Also, of course, the more you know about a subject the more accurate you can make your
Fermi calculation.

87 Solved problems
1. Our town has 120,000 inhabitants. What are the numbers of fihs and deaths?

Solution: Since the town does not seem to be growing or declining, to a first
approximation the numbers of births and deaths should be about the same. If the average
life span is 70, for our rough calculation we may assume that, on ayaragehabitant

will die at age 70. Thus the number of deaths should be 120,000 divided by 70, i.e. about
1,700 per year.

2. How many hairdressers in our town of 120,000 people?

Solution: Most men need a haircut once a month. Most of the hairdresseraltase
quarter of an hour per haircut, presumably more for women, but then women have a
haircut less frequently.

On average, in a town of 120,000 people each month there will be about 100,000 people
needing a haircut. Divide by 20 to get the number per%@@0. Each hairdresser can do

20 haircuts a day. Divide by 20 to get 250 hairdressers. This can be checked by using the
yellow pages to count the number of hairdressers. In our phone book the total is 120. So
the calculation is wrong by a factor of 2.i3s not bad for a rough calculation, but in any
case, one thing we did not take into account is that many hairdresser salons employ more
than one hairdresser. If we assume the average is 2, then the rough calculation should have
been improved by dividingy 2: 250 divided by 2 is 125 hairdresser salons.
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3. Weight of a page of paper.

Solution: Paper is measured at weight per square meter. Suppose our paper weighs 80g
per square meter. If the size of a page i$290 mm, i.e. approximately

0.2n? 0.3m, therthe area will be 0.06 square meters. Hence, the weight musé B€D80
or approximately 5 g. As a check we use a scale and found the weight to be 4 g.

4. Weight of the earth

Solution: The volume of a sphere of radius r i&3. Since the radius of thearth is
approximately 6,000km, and sincp 4 iSapproximately 4, the volume is rough® @3 10°)

= 4216 10°, or 864 10° km>. The weight of one cubic centimeter of water is 1 gram, so the
weight of one cubic meter of water is®1§rams, or 19kg, which means that one cubic
kilometer weighs 1% kilograms.

If we guess that earth is four time as heavy as water, the weight of the earth must be
approximately 864107 43 10" kilograms, or 3456107 kg or 3.456 10°* kg. Checking on

the internet we found a v 0f5.9763 102 kg. for the weight of the earth. Our guess is out

by a factor under 2, not too bad for a first approximation.

5. Quick calculation of the tax burden.

Solution: In a country with a tax rate of 20% and a value added or sales tax of 208¢efg

income of 100 one has to pay 20 in tax. This leaves one with 80. A total purchase price of 80
breaks down to 67 plus 13 value added tax. So when one purchases an item for 80 one has to
pay value added tax of about 13. The person who receives tnesGd@ pay 20% tax on that,

which gives a further 13 tax to the government. Thus, the total tax so far paid on the original
100 is

20+ 13 + 13 = 45.

6. Conservatives claim that reducing taxes will encourage sales, which, in turn, will
result in more tax being collected despite the lower tax rate. How sound is the
economics?

Solution: To verify this imagine that there is a 5% tax reduction, say, from 20% to 15%.
Suppose this results in everybody earning 15% more, a rather extravagant estimate.
Previously,if somebody earned 100 he paid tax of 20. Now the same person earns 115 and
pays tax at 15%, i.e. 17.2. This is lower than the original 20, and results in a net loss for the
government.

7. A person is selling a product at £100 with a profit of £50. He detss to hold a sale
giving a 10% reduction. How many more of his product must he sell in order make the
same profit as before?

Solution: Since the sale price will be £90, his new profit will be £40, instead of £50. Thus,
one needs to sell 25% more to get #ame result as before. Of course selling 25% more is a
lot more work, so unless many sales result from this maneuver, in the long run it will not be a
good idea

8 Three for the price of two.
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Some stores offer three items for the price of two. Fornstaone is offered three books for

the price of two.. In the following table, we calculate the profits. Take the example when the
books are sold at a price of £10 each. The profit will of course depend on what the books cost
the store. We will considdwo possibilities, assuming first that each book costs £5. Then
we consider the profit if each books costs £4.

Thus if each book costs the store £5, selling one at £10 gives a profit of £5. Selling three for
the price of two costs the store £15, dhely sell them for £20. This gives them a profit of
£5. The rest of the following table has been calculated in a similar way.

Cost of book to the store Profit selling one book Profit 3 books for the price of 2

£5 £5 £5

£4 £6 £8

From the table wee® that selling three for the price of two gives the same profit as selling
just one book.. On the other hand, with a lower cost, of £4 for the store, three for the price of
two gives a larger profit than selling simply one. Thus for this method ohgeli be
profitable for the store, there must be a substantialumaurk

9. Pyramid selling.

There is a type of selling which sounds good for all participants. The first person sells
franchises to 10 subagents, and gets a percentage of their profits. Eadent then sells
franchises to 10 subagents and also gets a percentage of their sales. And so on. This
system is untenable. Why?

Solution: Suppose we are dealing with a town of 100,000 people. Suppose there are 5 stages
of agents and subagents. The vergtfin the chain has sold franchises to 10 subagents and
each of these sells t010 more, making a total of 100 agents. Each of these 100 sells to 10
more, making a total of 1,000. Each of these again sells to 10 making a total of 10,000
participants. Eachfdhese sells to 10 more, making a total of 100,000 at the fourth stage. At
the fifth stage there would be 1,000,000 participants, and these are only the ones who have
been appointed at the fifth stage, and do not even include all the others. In otrerafterch

steps the whole system collapses because there are not sufficiently many people to participate.

10. Estimate the lower of the two blood pressure readings for a person.

Solution: The blood pressure is measured by two readings in mm (millimetersgrcury.

When you are standing upright the lower pressure must be sufficient to keep the blood in the
brain, otherwise you would faint. The heart is roughly 50 cm from the top of the head, and so
the pressure must be sufficient to support a 50 cm cobfrblood. If we make a rough guess

that blood and water weigh the same, we would need to support a 50 cm column of water.
However, since we are not always at the minimum requirement, let us add 50% to get 75 cm
of water.

Blood pressure is measured nothe lengths of water columns, but in the lengths of columns
of mercury. To change from a column of water of 75 cm to a column of mercury divide by
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13.9 to get about 5.4 cm, which is 54 mm. Doctors would say that this is too low, and a value
of 70 or 80 wold be more reasonable.

11. Pension. How much must one save for a pension of T pounds per year?

Solution: Suppose you want to have a pension of T pounds per year. Once one reaches the
retirement age of 65, one has probably not much more than 15 yearfslikeft 80 one will

need 15T pounds in savings. Of course one will invest this sum, but the usual idea is to
invest in very safe funds, which means that you can not expect a very high return, but
hopefully enough to cover inflation and perhaps give yamugh money for a few extra years

if you live longer than 80.

As a check we note that the annuity rate is about 6% to 7% which is also about 1/15. This
means that insurance companies that provide annuities want a paymeht @b IBovide a
payment of T ponds per year.

12. Pension. What percentage of his salary should a person save for a satisfactory
pension?

Solution: If one receives a salary of S, in practice one hopes for a pension of S/2, which is
regarded as satisfactory in England. Thus if we useadlwilation in the preceding example,

one should save a minimum of¥1%/2. Here one can afford to take greater risks and thus get a
greater return on the money one saves. One can at a guess expect to get double or even three
times the money one has savegtause of a reasonable return. (See the following problem for

an explanation of this.) Letds be &S4dutious
Assume that one works for 40 years. Thus each year one needs to 38X6Q5i.e., about

9% of salay.

13. If one saves one pound per year for 40 years at 5% interest, what is the final sum?
Solution: Note that 5% is a good average return, allowing for inflation and taxes.

After the first year one has (1 + .05) pounds. One then puts in another 1ngssamaking a

total of (1 + (1 + .05)) pounds. Since this accumulates interest at 5%, after another year we
will have (1 + .05) + (1 + .05pounds. One then adds an extra saving of 1 to get a total, after
the second year, of

1+ (1 +.05) + (1 + .05)pounds.
Continuing in the same way, after 40 years we will accumulate a total of
1+(1+.05)+@1+.059+ é+ ( 1°potinds. 05)

In order to calculate this sum, we replace (1 + .05) by the symiodl thus the sum S we
wish to calculate can be writtas

S=1++r?+ ér*%
Next, we multiply this by we get

rIS=r+r’+ & r'%r,
The differences betwears and S are the 1 in the expression for Sréhih the expression
for rS. Hence, if we subtract S frar8, the common terms cancel ontlave see that

rSi S=¢i 1)S =r*i 1.
Hence, S =rf*i 1)/(r i 1), and since = 1.05, we see that

S =(7.3921)/(1.051) = 6.392/.05 = 127.84.
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Without interest, we would of course have saved £1 each year for 40 years, i.e. £40. The
interest has mew that we have something like 3 times the amount.

14 A twenty year old receives a prize of one million pounds which he puts in a bank.
Should he give up his job and #Alive happily

Solution: Assume his present job pays £25,000 per year. Withlleon pounds one would
expect to have a more luxurious life, say £50,000 per year. This would last 20 years. So he
would be 40 when he had used up all his winnings. Clearly our 20 year old must think this
over more carefully. He should certainly consiagerests. Suppose he invests in an interest
bearing account at 6% and that inflation is 3% and tax is 20% per annum. So he is receiving
3% after allowing for inflation, and after tax, he is getting 2.4%. Thus he has an income of
£24,000 per annum. ltoés not look as if he can afford to use £50,000 per annum. These
calculations suggest that he seeks a financial adviser.

15. In September 2005 a hurricane threatened to destroy Houston Texas. It was essential
to leave Houston. If you have a car, howrgent is it to leave?

Solution: To assess how urgent this was one could do the following rough calculation:
Suppose that 1 million cars need to leave Houdobhknowing Houston we have to guess.

It would be nice to have some basis for this guessapusual Fermi calculations are made
on insufficient knowledge. Inhabitants of Houston would do better.

Suppose there are 5 ways of leaving the city and each road has 4 lanes. Suppose that with the
emergency, traffic moves slowly, say 20 km per hdsuppose we allow 20 m per car. Then

in an hour each lane will take 20000/20 = 1000 cars, so five four lane highways will take
20000 cars per hour., A million cars will require about 50 hours, about 2 days. With only
two dayods not i tedoleave aswandsgosdibkee. sensi b

16. How long do you need in order to learn a foreign language?

Solution: To manage in a foreign language, one needs say 3,000 words. One can learn say 6
words in an hour. Hence one needs 500 hours. At ten hours athisek about 50 weeks, i.e.
a year to get a useable knowledge of a language.

17. Estimate the proportion of teachers in the population.

Solution: Assuming that ages in the population vary from 0 to 80 and that they are equally
distributed. In Englandne goes to school from the age of 5 to 17. That means the
proportion of school children is 12/80 = .15. or 15%. Assuming that each pupil is in a class

of 30 others, and each such class needs a teacher, then we have that the percentage of teachers
mug be %2%.
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Chapter 5

PERCENTAGES

1% could be a small or a large number. It depends what you compare it with. But 2% is small. That is
the advantage of percentages. You know the importance of each item.

81 Definition and examples

A simple but extremely valble method of understanding numbers is to interpret them as
percentages. This is especially so for figures one is not intimately concerned with. So, for
instance, financial reports can be understood better by converting them to percentages.
Similarly the budget for a country is more readily understood when expressed in terms of
percentages.

As an example: In a prison population of 6,000, 12 prisoners escaped one year. The
opposition called for the resignation of the Justice Minister who is also respofwible
prisons. In percentage terms this means that 0.2% of the prison population have escaped, and
even if this occurs every year, it is quite a small percentage, and calling for the resignation of
the Minister of Justice seems a bit overboard.

Another examle: The Rector of our university explained we were some ten thousands of
pounds in the red. It was a tremendous figure. We were all shocked. So we asked the Rector
what the deficit was as a percentage of the income. He had not thought of this butnich the e
said about 5%. This did not seem so serious a problem as it did at first. This is the value of
percentages. They enable you to make sense of the figures. Nowadays with pocket calculators
or spreadsheets they are easily calculated.

Examples
On holiday wih a budget of £500 for a week a couple has estimated the following expenses.

Bus, tube and train travel | £70

Food including restaurants| £210

Museum and theatre charg| £150

Miscellaneous £70

FIGURE 1. Holiday Money
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In the next table we have expredghe expenses in terms of percentages of the budget.

Bus, tube and train travel | 14%

Food including restaurants | 42%

Museum and theatre charg| 30%

Miscellaneous

14%

FIGURE 2. Holiday money in percentages

The percentages are calculated by dividincheaxpense by 500, the total cost in pounds for
the week, and multiplying the result by 100. Thus bus, tube and train travel percentage are
calculated by (70/500) x100 = 14. The sum of all percentages must be 100%. It is easy to

understand the significanoé the figures, for instance, 75% is three quarters, etc.

Percentages give a clearer way of seeing how the money is spent. For instance, these figures
seem to indicate that it might be worthwhile spending less on food, by reducing the number of
restauranmeals and eating more sandwiches prepared at home. This would leave more of the
budget to spend on museums and theatre visits.

Also useful to keep in mind is the connection between expenditures and percentages of the

weekly and daily budgets in the follavg table.

£ % per week | % per day
10 |2 14

50 |10 70

100 | 20 140

500 | 100 700

FIGURE 3. Holiday expenditure as percentages of the total available to spend

Here again we have assumed a total weekly budget of £500. Spending £10 amounts to a
percentage of th week 6's
£500/7=£71.43. So £10 as a percentage of the daily budget is about 13%. This makes it easier

budget of

10/ 5001 100,

to judge whether it is worth spending that £10 on a particular day.

In calculating a percentage oserts by deciding on the reference value. In this example we
have chosen the total amount available for the week to be the reference. Choosing a different
reference will result in different percentages and give different impressions, so it is important
to consider carefully what one should use as a reference. In this case, we might have used the
cost of the total holiday as a reference, i.e. the cost of travel, the cost of the hotel, and the cost
of the food, museums, bus etc. In this case the idea wWaslgalecide how £500 was to be

used to enjoy the holiday, and so it seemed the right quantity to choose. In general, if the

reference is denoted by R, the percentage for each item is calculated by the formula
(Item/R} 100.
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Caution: Do not try to averagegocentages. For instance, if an investment goes up 100% one
year, and then down by 50% the next year, the net result is not 25% 300R) the average

of the two percentages, but 0%. For if you have £100, a 100% increase gives you £200, and a
50% decease gives you £100, i.e. you are back where you started from. .

A2 A fictitious companyds accounts

I n the following table we have | isted a comp
This year Last year
Sales £386,234 £320,234
Advertising £50,000 £25.000
Postage & telepone £35,874 £30,874
Wages £140,000 £130,000
Directors fees £70,000 £70,000
Consul tant §£568 £368
Account ant g£1,865 £1,865
Profit £87,927 £62,127
Working capital £25,000 £25,000

FIGURE 4. Accounts of a fictitious company

We can reexpres s t his in terms of percentages of
following table:

This year/last year %
Sales 120
Advertising 200
Postage &telephone 116
Wages 108
Directors fees 100
Consul tant 154
Account ant 100
Profit 141
Working capital 100

FIGURE5. Accounts reexpressed in percentages of previous year y

Thus we see at a glance that sales are up by 20% and profits are up by 40% and advertising
has doubled. The other items have shown relatively no change.
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83 Calculating percentages

We can calculate the percentages quickly with the aid of a pocket calculator. Even quicker is
to use a spreadsheet. If you are familiar with say Excel, then the following description may be
sufficient, though usually handling computer prograssnore easily done with help. To
illustrate how this method works we will take the holiday budget described in Fig. 1.

Begin by opening Excel. Il n cel | D2 type MnPel
500, which is the reference figure we chdse the holiday budget. Type in the table
beginning in cell C4 where you type in fABus.

continue to type in the rest of Fig.1. The table for the budget is now in cells C4 to C7 with the
numbers in cells H4 tBl7,

Bus, tube and train travel 70

Food including restaurants 210
Museum and theatre charges 150

Miscellaneous 70

FIGURE 6. Example used to illustrate use of Excel for calculating percentage

Il n cell | 3 type f%0. | n @sslrdturn.l This dalgulates the H4 /
percentage that 70 is of the reference you have placed in cell H2 (which in this case is 500).
Go back to cell 14 and press ctrl and C at the same time. Then go down to the next cell I5 and
press ctrl and v at the same tinvau then go to the next row down to cell 16 and press ctrl

and v at the same time. You go on doing this till you have covered the whole column. What
Excel does is to copy your instruction of how to work out a percentage to each of the cells. It
changes ta H4 successively to H5, H6 and H7 as you go down the column, but the H2 which

is the reference remains unchanged because Excel interprets the $ sign to mean leave this
unchanged.

Thus, you will get the percentages in this way. If you should decide tgetiae reference R,
go back to cell H2 and change it accordingly.

84 Examples of judging figures in the news

It is very difficult to comprehend large numbers, so it is particularly useful to use percentages
to describe them. The problem is: what percentaEgerhat? The following examples give
ways of understanding the significance of the numbers.

Example: In the Swedish news two items were mentioned. The first was that there would be
an extra amount of one million crowns to assist further employment. fieewas that 2,300
million crowns was the estimate of how much money was spent on illegal drugs per year.

Since a reasonable salary in Sweden is a quarter of a million crowns per year, the million
crowns correspond to the wages of 4 people in a year. Wesexa immediately that the
million crowns 1is not worthwhile bothering
overall job situation.

The second figure, of 2,300 million crowns should be considered in relationship to the
population. Since the populati@i Sweden is 9 million or roughly 10,000,000, or this
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means that on average 2.3%bPowns are spent on illegal drugs by each person. Of course,
only a small part of the total population can be taking drugs, so as a rough guess we can start
by excludng half the people, those between the ages of 0 and 20 and those from 60 to 80. Of
those remaining, at a rough guess, suppose a quarter take drugs. This means that these people
are spending 2,000 crowns each per year. This is a considerable sum of mbrseythe

drug consumption is significant.

85 Keep an eye on the total figures

Occasionally percentages may deceive. Suppose for argument that we have a study of 2,000
people, half of whom drank water with meals, and half of whom did not. Suppose irsthe fi
group there were 3 cases of cancer, and in the other group there were two cases of cancer.
Then we could claim:

~

Aln a study of 2,000 people, those who di
cancers than those who did not drink wat

Stiictly speaking the statement is correct, but totally misleading, in that the number of cases is
not sufficient to make a sensible conclusion.

86 Abortions

The problem of allowing legal abortions is one of considerable importance. There are a
number of diferent views, the most usual being

1. Abortion is killing and killing is not allowed and so abortion should be illegal.

2. While the foetus is inside the woman, it is really her right to decide what is to be done,
and so abortion is acceptable.

3. Contraceptive an@bortion advice encourages sexual intercourse and so should be
banned.

4. In view of the need to avoid abortion; sexual and contraceptive advice should be freely
available.

We do not wish to take sides but simply wish to point out the urgency of the prdhlem.
Sweden the number of abortions per year is 30,000. Assuming that the ages of most people in
the risk zone for needing an abortion are between 15 to 25, i.eyadespan. If one argues

that the population goes up to 80 that means that is roughlgflif8e population. Since
Sweden has a population of 9 million, there are approximately one million people in that
range and half of them are women. That means that one twentieth or about 5% of the women
population per year are affected, a very large péagen

87 Compound increases

If you look back at prices and wages over say the last twenty years it is striking how much
they have risen. This may be a consequence of the fact that we always think of increases in
percentages per year. We expect our saldoiascrease by a certain percentage each year.
Similarly we accept with resignation but as being at least reasonable, an increase of say 5%
each year in costs. However these costs are compounded, and occurring year after year they
become large. For inste@m an increase of 5% per annum becomes a doubling in 14 or 15
years. Is it possible that the very concept of a percentage increase per year is the reason for the
huge increases in costs and salaries?
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88 Worked examples

1. Your salary increases from £30,00f £35,000. What is the percentage increase?
Solution:
The percentage increase is (5,000/30,000)x100 = 16.6%.

2. Your salary decreases from £30,000 to £25,000. What is the percentage decrease?
Solution
The percentage decrease is (5,000/30,000)x100 = 16.6%

3. Your salary of £30,000 increases by 5%. What is your new salary?
Solution:
The increase is ((5/100)x30,000 = £1,500.

4. Your salary increases by 10% one year, only to fall by 10% the following year. Are
you back to where you started?

Solution: For eath £100 you received before the increase, you now receive £110. The
decrease of 10% means that you now receive £99, so you are not back to where you
started.

5. Your salary goes up 10% for two consecutive years. Is this the same as a 20%
increase?

Solution: £100 increases to £110, which in turn increases to £121. Thus your salary after
two increases of 10% is greater than after a single increase of 20%.

6. Using Fig. 4 of 82 calculate the percentages of expenditures with respect to sales for
this year.

Solution:
Percentages with respect to Sale

Sales 100
Advertising 13
Postage & telephone 9

\Wages 36
Director’s fees 18
Consul tant 0.1
Account ant 0.48
Profit 23
Working capital 6

FIGURE 7. Calculating the percentages in Figure 4.

7. Edimating a percentage helps thinking.

In the Swedish election held in September 2006 an alliance of conservative parties went to the
polls with the promise of reducing unemployment. They had a number of measures, which
included making it cheaper for efogers to employ a long time unemployed, but they were
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also going to reduce unemployment benefits. Was it smart for the unemployed to vote for this
alliance?

Solution: Probably not. For one must always ask by how much could the new government
reduceur mpl oyment . It wondét be 100% and a rea:
the whole it is difficult to make a big change in a society. This means that 10% of the
unemployed would get a job but that the other 90% would have lower benefits.
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Chapter 6

MEASUREMENT SENSE OR DIMENSIONAL
ANALYSIS

If the units are right, the formula is often right.

This chapter is about length, time, force, work and power, fundamental physical concepts,
which we will discuss informally to provide an intuitive feel for thesacepts. Kilometres,
kilograms, watts, horsepower, seconds: these are the substance of our discussion.

In the early 1900s, the advent of mass production required precise measurement. In the
beginning of the motor industry each part was handcrafted to eachbut with the
introduction of mass production methods it became important to build parts which were so
standard that they would fit any unit on the production line. Precision measurements and,
consequently, accurate units, became imperative.

The intenational system of units, normally denoted by Sl (short for Systeme International), is
most common, although the Imperial system is popular in America and Great Britain. We will
concentrate almost exclusively on the Sl system.

81 Length

Since some measuremts are very small and others very large, it is convenient to express
these in terms of powers of 10, which we will now define. The convention is thatab@ds

for 10 multiplied by itselin times ifn is a positive number while T0s 1/10. For examps,
5X10° = 5000, while 5X10 = 0.005. This has the added advantage that calculations
involving products become easier, sinc€X400" = 10™™", for both positive or negative values

of mandn. [These powers of 10 have also been discussed in Chapter anSeLti

The standard unit of length is the meter, abbreviated by m. Originally it was defined as one

ten thousandth of the distance from the equator to the North Pole. Later a special rod was kept

in Paris to be the standard for the meter. The present chgthalves using light to define the

standard, but the technical details need not concern us here. All we need to know is that there

is a system that ensures an accurate and uniform definition. Several prefixes are standard for

Sl units. We use kilgforit hous amndof;orcefinhtuinfi oedtitdoumiahidi h
example, a kilometer is a thousand meters.

A centimeter (cm) is one hundredth of a meter, that is, 1 cmi’amland 1 m = 19cm, To
have a reasonable understanding of the units of lettgthyidth of a hand is about 10 cm, a
meter is the measurement from the ground to your belly button, and the length of a small
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European car is about 4 meters. A thsemy block of flats is about 10 meters high, which is
also tree height. Also, while 10@eters is a short stroll, 100 meters vertically is extremely
high, the height of a 36tory skyscraper.

Turning to measuring the smallest of distances, such as the atom, we need another unit called
the angstrom. An angstrom is 1& cm., which is about theidth of an atom. The smallest
distance that can be seen in an electron microscope isfiftlmeef an angstrom.

The following table lists a few other approximations.

Finger width 2cm
Width of thumb 2.5cm
Height of step in a flight of stairs 16 cm
Length of a foot, or height of a head | 25 cm
From the foot till the knee 50 cm
Width of kitchen units 60 cm
Foot to navel 1m
Tall man or height of door 2m
Length of small car 4 m
One story of a block of flats 3m
Height of airplane flight 51 12 km
Height of TV satellite 36,000 km
82 Mass

The Sl system has a standard unit of mass, the kilogram, abbreviated kg, which is a fixed
body kept under careful conditions

The standard mass is kept well protected and used only to make a very few geconda
standards, which are themselves used to make further standards, and in this way the standard
of mass, the kilogram, is uniform throughout the world.

The grami written g- is the mass of a body one thousandth of the kilogram. To give some
idea of massewe have the following examples:

Mass
A4 sheet of paper 49
Standard letter 209
Slice of bread 409
An eqgg 60g
Banana or apple 120 g
Meal of two eggs, two slices of bread, and a po{ 350 g
A litre of milk 1 kg
A packed suitcase 20 kg
A man 70Kkg
A medium sized European car 800 kg

Substituting for the unit as shown in the following example is a useful technique for changing
from one unit to another.
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Example: Changing units, milligrams to kilograms. Express 34 mg as kilograms.
The first step i$o convert mg to g:
1000 mg =1 g, so 1mg = 1/1000g :'3130
We simply take the mg in 34mg and replace it by 3gl0rhus
34mg = 34 x1dg.
The next step is to convert g to kg:
1000g = 1 kg, so 1g = 1/1000 kg =3y, or g = 10°kg.
To continue, we rdpce the g by x1Bkg. Hence,
34mg = 34 x10g = 34 x10’ x10°%kg = 34 x1Pkg.
Note that we have simplified T0x10°to 10°.

83 Time

The Sl unit of time is the second, and this is denoted by s. Originally this was defined to be
the time for a pendufu of length one meter to swing from one extreme to the other. The
modern measurement is based on the CegiB8atom, but we will not bother about the
details in this book.

AOne thousand and oneo, Afone thousaimdinand t\
seconds. The number of heart beats is about 70 per minute, so that one heart beat is about one
second. Counting fast from one to ten lasts about 22 seconds.

We denote hours by the symbol h. The following table lists some time markers.

Hours workedn a year (40 hours/week) 2,000
Hours in a year 8,760
Time spanned by great grandfather, grandfather and fathh 100 years

84 Speed:
Speed is defined as distance traveled divided by the time traveled.
Speed = distance/time
In symbols, the speed of an ebj traveling a distanakin timet is
dhi.
Example: Calculating speed

A horse travels 56 kilometers in 3 hours. What is the speed of the horse?

Solution
Speed = distance/time = 56km/3 h = 18.67 km/h. Here is a table of speeds.
Travel at 11 km/h 3 m/s
Travel at 108 km/h 30 m/s
Man running 100 meters in 10 second| 36 km/h
Speed of sound 340 m/s
Speed of light 3 x10° km/s

43 (153 43



44

For instance, if a man shouts out to you at a distance of 100 meters, the sound will take one
third of a second to reach you. On thtber hand, the light reflected from the man will take

10 times 1/3 x18 seconds or 1/3 x1Vseconds to reach you. The sun is so far away that it
takes 8 minutes for the light from the sun to reach the earth.

Estimating the speed of sound

Two people stnd about 150 meters from one another. The first one blows a whistle, and starts
his stopwatch. The other whistles back as soon as he hears the first one. When the first one
hears the other whistle, he stops his stopwatch. Thus the sound has traveitecaBadf the

time is about 1 second, the speed can be calculated as 300m/sec.

Another method of estimating the speed of sound is in the spirit of Chapter 4, using Fermi
calculations, in which we guess and estimate a rough value.

We know that commercial ezplanes fly at a speed of about 900km/h. This is less than the
speed of sound, so this is a lower estimate for the speed of sound. Now 900km/h = 15km/ min
= 250 m/s. So knowing the speed of commercial aircraft, we can estimate the speed of sound
to be abat 250m/s, which is roughly in agreement with the known value.

Estimating the speed of light by satellite

This is also a calculation in the spirit of Chapter 4. If you listen to a TV sending a report from
a correspondent who is a considerable distance awdlyat the message comes via satellite,
you will notice a pause between the question asked in the studio and the reply. This is
partially due to the distance that the radio signal must travel. The radio signal travels at the
speed of light. The satelliis normally in what is called a geostationary orbit, which is some
40,000 km above the earth. The signal must therefore travel from the sender in your country
to the satellite, and then travel from the satellite to the correspondent. His reply must also
travel up to the satellite and from the satellite back to the studio. That is a total journey of 4
x40,000 km or 160,000 km. By dividing this distance by the delay in replying one can get a
rough estimate of the speed of lighit one program we viewed, tteewas a %2 seconds delay,
which gives an estimate for the speed of light to be 320,000 km/s

Rohmer estimate of the speed of light

In 1676 the Danish astronomer Rohmer gave an estimate for the speed of light. He had
measured when the Jovian moon would srtie face of Jupiter, and found that this time
varied depending on how far away Jupiter was from the earth. He suggested that the time
difference was due to the time it took for the light to travel to the earth and in this way gave
the estimate, 227,0007Ks.

Some wind speeds

60 km/h is astrong breeze large branches in motion, umbrellas handled with difficulty,
telegraph wires can be heard whistling. Windr@tkm/h is called asevere gale and will
cause structural damage, such as chimney pots beipigakd and slates removed.wind
speed of100 km/h is a violent storm; when it reached18 km/h it is classified as a
hurricane, thankfully not very often experienced.

Examples of speed conversion

To convert m/s to km/h we note that 1km = 1000m, so tmat=110° km and 1 s = 1/3600 h.
Substituting these values for m and s, we get

1 m/s = 10° km/(1/3600) h = 18 X 3600 km/h = 3.6 km/h.
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Converting from km/h to m/sec is a bit easier. Since 1km = 1000m and 1hr=3600s, we
conclude that 1 km/h = 1000m/36005/48 m/s.

85 Acceleration

Acceleration is defined as rate of change of speed. That is, if the speed tat tifne s, the
acceleration necessary to achieve a spesgdatftimet; is defined to be

(s1-0)/(t1 - to).
That is, the difference in speedivided by the time.
Example 1: Acceleration.

A car running at 40km/h speeds up to 50 km/h in 2 minutes, i.e., 1/30 h.. The acceleration is
given by(5071 40) km/h/ (1/30) h = 300 km/h/h. This is usually written 300 kfn

Example 2: Acceleration.

Calalate the acceleration of a sports car if it moves from 0 to 100km/h in 4 seconds. The
change in speed from 0 to 100 is 100km/h = 1/36 km/s. Since this occurs in 4 seconds, the
acceleration is 1/144 knflsin this example we chose to work in seconds, vd®ia the
previous example we worked in hours. Either way is acceptable, but since the Sl units include
the second as a basic unit, it is probably better to use seconds.

FIGURE 1 Galileo Galilei (15641642). Introduced the modern scientific approach
based on experiment or theory supported by experiment. Father of Mechanics the
study of moving boigs, forces and gravitation. Also made magnificent discoveries
in Astronomy.

Acceleration due to gravity

It is a remarkable fact that all bodies acted on by gravity fall to the earth at the same speed if
air resistance is insignificant. Galileo (156842)demonstrated this by dropping two grossly
different sized cannon balls from the leaning tower of Pisa and observing when they struck
the ground. The expert knowledge at that time was that the larger the mass the shorter the
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time of impact. When Galileoi&d the experiment he proved this was wrong, and showed that
the difference perceived earlier was due to air resistance.

One way in which to argue this logically is to consider a mass of 10 kg and regard it as being
split into 10 masses of mass 1 kg edgdlop all ten one kg masses simultaneously and, of
course, they will all fall to the ground in the same time. Two adjacent masses will not affect
one another so if we glue all the masses together to form one 10 kg mass, they will still fall to
the ground irthe same time.

You may prefer to argue this case using Newt

Experiment reveals that the acceleration of any mass when wind resistance is disregarded is
9.80 meters per second per second.

86 Force

Force deperglon two factors. You notice that a force is acting when a mass accelerates. The
mass and the acceleration are both needed to define the force. It is defined by multiplying the
mass by the acceleration. The Sl unit of force isNe&iton, which is the fore needed to

cause a mass of one kilogram to accelerate one meter per second per second. If you hold a
mass of 100 grams in your hand, it is pulled to the earth with a force of approximately one
Newton. This is because the acceleration, as we remarked, ab&80 meters per second

per second, and so the force is 0.1 kg x 9.86;ifat is 0.98 Newtons, or approximately one
Newton. The symbol to denote a Newton is N.

87 Work and Power, Joules and Watts

In this section we discuss the material in an intaitivay, and provide a more precise and
detailed discussion in §10.

Work depends on two factors. There is a force you are struggling against and a distance that
you move through, and indeed, work is defined to be the product of the force and the distance.
For instance, if you lift a suitcase a meter high from the ground the work is less than if you lift
two suitcases a meter high, or lift one suitcase 2 meters high. How long you take to do this
does not change the work done; a second for the job entailathe amount of work as
taking an hour, just as if you travel from one point to another, you still have travelled the
same distance, whether it takes a day or an hour. It is the speed which changes if you take
more or less time, not the work.

However, if ya take the time into account, then instead of work you measure power. Power
is the work divided by the time; so the shorter the time, the more the power.

Power is measured in waitsndicated by W. A kilowatt is a 1,000 W, and is denoted by kW.

Example: Lifting a suitcase weighing 25 kilogram one meter high (i.e. up to your waist) in
one second is a power of roughly 250 W. If you do the same work in one half a second, the
power is 500 W.

How exactly these ideas are defined and the values calculated aptfeaoptional material
below in 810. Here the aim is to give an intuitive idea of these concepts.

Thus,a person at rest is working at a rate of something like 30 W. A normal size electric light
bulb works at a rate of 60 W, and an electric kettle watka rate of about 1,000 W, i.e. a
kilowatt. The power of a human being, i.e. the rate at which he can work, is approximately 90
W.
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During the steam age it was the custom to visualize the power of the new steam engines in
comparison with horses. This led the unit of a horsepower. One horsepower is the
equivalent of 746 W. Actually this corresponds to an idealized horse, and the value is a little
optimistic, in that working at the rate of one horsepower is more the rate of work of one and a
half horses.

The concept of horsepower gives one a graphic way of viewing power. When you boil a kettle
of water in an electric kettle, the electricity is working at a rate that is more than that of a
horse. A car driving fast at constant speed along a level road abtke rate of about 20
horsepower.

Cars can typically develop 100 horsepower. Super sports cars boast 350 horsepower and
more.

The typical electricity consumption in a modern flat means that we have roughly the
equivalent of a horse working for us for teaurs every day or 80 mdrours oflabour In

other words, we have the equivalent of 8 slaves working for us every day for ten hours. No
wonder modern man is like a king of only a century ago. [See 89 problem 3 for the
calculation.]

Kilowatt hours: A kilowatt hour is a measurement of work. It is the work done at a rate of
one kilowatt for one hour. For example, a typical electric kettle boiling watestognfor an
hour performs one kilowatt hour of work. It is denoted by kWh,

88 Dimensional Analysis

A useful technique for checking a physics formula, or even getting a suggestion as to what the
formula should look like, is obtained by using the fundamental dimensions of length [L], time
[T], and mass [M]. The square brackets are used to indicate that wallkirg about
dimensions. It is a fundamental law in Physics that in any equation the dimensions on the
right-hand side of the equation must be equal to the dimensions on tharidfside of the
eqguation.

Example 1
Find the dimensions of area and voluméhat are the dimensions of speed and acceleration?

Solution: Area is calculated by multiplying length by breadth. Thus the dimensionis [L]
Volume is obtained by multiplying length by breadth by height with dimensich fijeed is
distance divided byime, giving us the dimension [L)/[T] or [L][T}. Acceleration is speed
divided by time. Since the dimensions of speed, as we have just calculated, aré, [ildfT]
acceleration we must divide by time again, and the dimension must be{L][T]

Example 2
Find the units of force and work.

Solution: Force is defined to be the product of mass and acceleration. Acceleration has the
units [L][T]?, thus the units of force are [M][L][TT Work is force, [M][L][T]? times
distance, [L], so the units for work gitd][L] *[T] .

Example 3

A pendulum of length is subject to gravity, which has acceleratgprFind the form of the
formula for theperiod of the pendulum, that is, the time required for the pendulum to swing
from its initial starting position back tcsistarting position.
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Solution: It seems reasonable to assume that the period will be a constant times a p@wer say
of the length], of the pendulum and tHeth power of the acceleration due to gravgyThat
is, T should have the form

T = constant®g®,

where the powera andb are to be determined. The dimensiong@ire the dimensions of
acceleration, i.e. [L][Tf, and the dimensions bfre [L]. Hence, the dimensions of the right
hand side of the formula are f1]°[T]®® = [L]*T]® . The® must match with the
dimensions of the lethand side, and sinc€é has the units of [T], this means that [T] =
[L]#*°[T]™®. This will be possible only i2b = 1, anda+b = 0, that isb = - %, anda = %
Hence the formula for the period must look like:

T = constant *“g™,

(Note that an exponent of kdeans the square root, and an exponentbfmeans 1 divided
by the square root.) In fact, the correct formula is

T=2pl”g™ = 2pQ/g).
Of course, this analysis does not give an exact result for theaotnsut it is remarkable how
frequently dimensional analysis points towards the right formula.

Example 4

A body in free fall (i.e., subject only to gravity and with no wind resistance) has an
acceleratiorg due to gravity. Find the units in a formulaatihg distance fallerx, and time
of fall, t.

Solution: Assuming a formula of the form= constantg®’, whereg is the acceleration due
to gravity, in terms of units this becomes

[L] = [L] 3 [T]%m]°.

Since the lefhand side of the equation has [L]tte® power 1a must also be 1. On the left
hand side [T] does not appear, but on the figind side we see that wighhaving the value
1, we have [T] 2 so this entails thadi = 2. The actual formula is

X = % gt.
We now come to what is at once the mmesnderful and the most terrible of all formulae in
Physics, namely the formula from Emassmei nds

and the speed of light, in one formula:
E=md,

the product of the masa andc?, which itself is the praact of the speed of light by itself.

Note that in Physics energy means the ability to do work, and the equation says that if the
massm were converted entirely into work, the amount of work would be given by the
formula. Thus the units of energy are thmsaas the units of work.
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FIGURE 2. Albert Einstein (1874.955), whose theoretical discoveries
contributed to the development of nuclear power and theeaubbmb.

It is the most wonderful equation because it explains so much. For instance, the sun, which is

the source of all energy and light on the earth, gives out an enormous amount of energy. For a
long time it was thought that this was the result ohing: the same sort of burning we have

on Earth, where matter combines with oxygen. That meant that it was possible to estimate
how much energy the sun had, but when the calculation was done, it was obvious that the sun
should have burnt out long ago. Qrdry burning could not explain the energy, which the sun
emitted and had emitted for so many years. [
came from the conversion of mass to energy.

Einsteinds equation al so menatiet intd dnexdy invoe our s
nuclear reactors, which has turned out to be a mixed blessing, with plenty of energy but with
awf ul danger s. Einsteinds theory has also |
our civilisation completely.

Example5Check t hat the di mensions on both sides

Solution: The dimensions of E the leffitand side of the equation are those of work, which we
found out in Example 2 immediately above, were [M{[[] % The dimensions of the RHS
are thos of [M] multiplied by the dimensions of velocity squared, i.€[[[]J* Hence the
dimensions on both sides of the equation are the same.

89 Solved problems
1. What is the acceleration in going from 0 to 100 km/h in 10 seconds?

Solution. The acceleratiors given by difference in speed divided by time. We need to use
the same unit of time. 10 seconds is 1/360 of an hour. The difference in speed is 100. So the
acceleration is

100/(1/360) = 3.6X1bkm h?.
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2. In a recent Winter Olympics the difference in tme between the first and second places
in the womenbdés skeleton slide was 0.65 secon
the event was 120 km/h, what was the distance in meters between the two at the finish?

Solution. 120km/h = 1201000 /3600 m /s 33.33 m/sec. Hence, 0.65 seconds corresponds
to

0.65%x33.33m =21.66 m

3. Assuming that your household uses 2,500 kWh per year, what is the average daily
consumption? What is the equivalent in horses per day?

Solution. There are 365 days in a yeaw, the average daily consumption is 2500/365 = 6.8
kWh. One horsepower is 746 W. So it would require roughly 9 to 10 horses to work at the rate
of 6.8 kW for an hour. So 9 or 10 horses working for an hour, or one horse working for 9 or
10 hours, will give bout 6.8 kWh. In terms of manpower, or slave power, this means we
would need 8 slaves working each day for each household for 10 hours, since a man can work
at only about 90 W.

4. If a man drives at the rate of 50 km/h for the first 300 km of a trip, how dst must he
drive over the next 300 km to have an average speed of 60 km/h for the 600 km journey?

Solution. At an average speed of 60 km/h for 600 km, it would take 10 hours to complete the
journey. At 50 km/h, the first 300 km drive would have taken ér&iowhich leaves him 4
hours to complete the final 300 km. Hence, to make up the time he would have to drive at 75
km/h over the final 300 km.

5. One man can dig a hole in 2 days, another man can dig the hole in 3 days. How long
will they take to dig the hole together?

Solution: There is an ingenious way of solving this problem. One calculates the rate of
digging the hole. The first man has a rate of 2 a hole per day, the second man a rate of 1/3 a
hole per day. Thus t he clomperdag Thusitagkes 6/5 & | +
day to dig the hole.

810 Additional Topics

1. Definition of force

The force acting on a mass is defined by multiplying the milaisskg by the acceleratioain
m/<, i.e.

Force =Ma.

The unit of force is the Newton. ThasNewton is the force that accelerates a mass of 1 kg by
1 m/$ For example, a mass of 15 kg which when acted on by a force accelerate$ Basm/s
a force of 1540 = 600 N acting on it.
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2 . Newt onds | aws of motion (published in 168

FIGURE3. Newton (164B1727) was caliscoverer of the Calculus and developed
a farreaching theory of moving bodies sucltlas motion of the planets.

Newton formulated three laws of motion. With these and the mathematical theory that
Newton developed, which is called Calculus, Newton was able to explain all the laws of

pl anetary moti on. Ne wt o n Orscalenlatind) todisstanae;, #the st i |
movement of satellites as well as the laws of physics which regulate our everyday lives.

1 Thefirst law states that a body continues moving in a straight line at the same
speed unless acted on by a force. One result ofathisvas to dispel the commonly
held belief that planets moved because angels or spirits were pushing them.

 The second lawdefines force in terms of mass and acceleration as described in
item 1 immediately above.

1 Thethird law is that to every action theis an equal and opposite reaction. That
law governs the motion of rockets as well as collisions of billiard balls.

Newton also assumed that there is a force of attraction between two bodies with masses m
m,, which is a constant G times the product ofirtmeasses divided by the square of the
distanced between them, that is,

F=Gmm/d’.

The value ofG has been found experimentally to be 6.67 ¥10The units ofG are
Nm?kg?where N stands for Newton, m for meter and kg for kilogram.

3. Explain why dl bodies fall to the ground at the same time if air resistance is not a
factor, using Newtonébés Laws of Motion.

Solution; If M is the mass of the earth ands the distance to the centre of the earth,
then a mass m will experience a force of

GmM/ P

accoding to point 2 above. Since the force equaswherea is the acceleration, we
have the equation

ma = GmM/F.
If we cancel m from both sides, the result is
a=GM/r
inwhichmdoesndét play a part. This means t ha

independent of their masses and, hence, will reach the ground at the same time if
released simultaneously.
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4. Definition of work

Work is defined to be the product of the distance a force is moved through times the
force. The unit of work is the joule, ataviated to J.

The Joule is the work done in moving a force of 1 Newton a distance of 1 meter. Since
the force due to gravity on a 100 gram mass is about 1 Newton, if you raise a 100
gram weight from the floor to you waist, you will have done one jouleook.

5. Definition of Watts

The rate of work in Joules per second is called the power. A Joule per second is also
known as a Watt.

6. A man weighing 70 kilos walks up three flights of stairs in one minute. What is the
work done and what is the rate of wok, i.e. the power?

Solution: Every step is 16 cm high and there are 16 steps per level. That means 768
cm, i.e. roughly 8 m. He is lifting 70 kg. The force acting on the man is calculated by
taking the mass and multiplying by the acceleration due to gravitich is 9.81 m/s.

Thus the force in Newtons is

70°9.81 = 686.7 N.
To calculate the work done we need to multiply the force by the distance, to get
8 686.7 = 5,493.6 J.

To find the rate or work we divide by the time in seconds, which is 60. Thusstiie re
is

5,493.6 /60 = 91.56 J/s = 91.56 W.

7. Approximate the power in raising a shoe from the floor to a height of 2m. in three
seconds.

Solution: A shoe of mass say 400 g =0 .4 kg has a force of 9.81 N . i.ethe mass

0.4 kg multiplied by the acceftion due to gravity 9.81 nflsThis is approximately 4

N. So the work done on lifting the shoe two meters is approximately 8J. Thus the
power required is 8/3 J/s. or 2.67 W.

8. A car journey of 100 km takes an hour and useslitres of fuel. What is thework done
and what is the rate of work.

Solution: This is another of those Fermi type calculations. According to the label on a
bottle of cooking oil it has an energy value of 3,700 kJ per decilitre. It would be better
to know the value for a decilitre petrol but this figure is not available, so we use the
cooking oil as a rough estimate. Hence a litre of petrol has about 40,000 kJ and 7 litres
about 300,000 kJ. Per second we have therefore been using 100 kJ per second, or.
100kw. Since a horsepower isughly 740w or, even more roughly, a kilowatt , this
corresponds to 100 horsepower. We know however that there are inefficiencies in
engines, and so if we assume only one quarter of the energy is available at the wheels,
the car is developing roughly 25rnsepower.
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9. Calories and conversions

Another unit of energy is the calorie. This is defined to be the amount of energy required
to raise the temperature of one gram of water by one degree Centigrade. Since calories
and Joules are measurements of energycam convert the one to the other, and a calorie
is the larger by approximately 4 times. More accurately,

1 calorie =4.184 J.

Just as there is a kJ, there is also the concept of kilocalorie, a thousand times larger. This
is also the unit used to meastm@man nutrition. It is often written as kcal or Calories,
with a large C. A daily intake is roughly 2,000 kcal.

10. Calories of some foods per 100 gram.
1 Bread 230 kcal

Olive oil 884 kcal

Butter 700 kcal

Fried hamburger 280 kcal

Cheese 30% 400 kcal

Cottagecheese 4% 100 kcal

Sugar 400 kal

1 Baked soya beans 100 kcal

=4 =2 4 A4 A

Thus, each gram of food gives between 1 and 9 kilocalories.
11. Estimate the weight of food eaten each day.

This is an exercise in the spirit of Chapter 4 Fermi Problems. Since one eats about 2,000
kcal per day, and food gives about 2 kcal per gram (rough guess based on the list of foods
above), we need 2,000 divided by 2, i.e. 1,000 g or 1 kg of food per day

12 Estimate the rate of energy used by a person.

Solution: Since 2,000 kilocalories is cammed in 24 hours (and this corresponds to the
minimum), the rate of energy is 2000/24 x3600 kilo calories per second = about 6 calories
per second. From point 10 immediately above, 1 calorie = 4.184 J. Multiply by 4.18 to get
roughly 24 J per second or ¥4. This seems to corroborate the roughly 30 W given in the
text above,

13. Given that 1W = 1J/s, that 1 calorie =4.18 J, and that 1 horpeo wer = 745 W,
a) Express Jin terms of calories
b) Find the relationship between kJ and kW hours
c) Find kW in terms of horsepower.
Solution:
a) Since 1 calorie = 4.18 J, dividing by 4.18, 1J = 0.239 calories.
b) To express kW hours in terms of kJ. 1J/s = 1W, so 1 W hr = 3600J.
So 1kW hour = 3600 kJ. Hence 1 kJ = 1/3600 kW hours = 2.778>%\0hours.

53(153 53



54

c) 1 horsepower = 745 W. Thu90d0 horsepower = 745 kW. Thus dividing by 745, 1
kW = 1000/745 horsepower = 1.342 horsepower.

14. Temperature

The most commonly used temperature scales are the Centigrade (also called Celsius)
and the Fahrenheit.

There is a third scale, called Kelvin. Zategrees Celsius is approximately 273 degrees
Kelvin, that is, O degrees Kelvin is 273 degrees below 0 Celsius. The Kelvin is of
scientific interest because at a temperature of 0 degrees Kelvin molecules have no
energy and have stopped vibrating.

The Celsis scale, which dates from 1743, is based on a temperature of O degrees for
water freezing and 100 degrees for water boiling. On the Fahrenheit scale, which dates
from 1724, water freezes at 32 degrees and boils at 212 degrees.

The founder of the scal€ahrenheit, used 32 to avoid negative temperatures in winter.

Al s o, Fahrenheitds idea was to have a tem
which is close to the actual figure of 98.6 degrees Fahrenheit. Unfortunately, when he

did his experiment, biassistant had a slight fever.

To convert from Centigrade to Fahrenheit multiply by 9/5 and add 32. To convert from
Fahrenheit to Centigrade, subtract 32 and multiply by 5/9.

Example: Convert 20 degrees Celsius to Fahrenheit. We multiply 20 by 9 anadivid
by 5 to get 36. We then add 32 to get the Fahrenheit equivalent of 68 degrees
Fahrenheit.

Convert 80 degrees Fahrenheit to Centigrade. We subtract 32 from 80 to get 48,
multiply by 5 and divide by 9 to get approximately 27 degrees Celsius.

15. When doeghe Celsius reading equal the Fahrenheit reading?

Solution Let t denote the temperature on the Celsius scale which is to be the same
reading on the Fahrenheit scale. Since t degrees Celsius is the same as (9/5)t + 32
degrees Fahrenheit, the problem isitmifa t such that (9/5)t + 32 = t. Subtracting t

from both sides gives (4/5)t32,so0t=40. That -0degreeshCelsiusitt 6 s
is also-40 degrees Fahrenheit.

16. Check the following verse which accentuates the bewildering variety of old Engjti
units:

A dozen, a gross and a score,

Plus three times the square root of four,
Divided by seven, plus five times eleven,
Is nine squared

And nothing more.

Solution: This is indeed an exercise in English units. A dozen is 12, a gross is 144 and a
score $ 20, and so their sum is 176, Three times the square root of 4 is 6, giving a total of
182. If we divide 182 by 7, we get 26. Add 5 times 11, i.e. 55, we get 81. 81 is 9 squared,
as claimed.
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17. Derive the units of G

Solution: We have the formula: force GmM/. Force has the units [M][L][T}, and r
has the units [L].

From the formula
[M][L][T] 2= [G][M] %[L]?, it follows that [G] = [M]*[L] ¥[T] 2.
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CHAPTER 7

MEASURING HEIGHTS OR TRIGONOMETRY

A knowledge of righéingled triangles with largest side 1
enables us to calculate the lengths of any other agigfied triangle

81 Shadow heights

It is easy to measure heights by means of shadows. If you want to decide on the height of a
tree then compare the length of its shadow with the shadow of a vediealfghe shadow of

the tree is four times longer than the shadow of the pole, then its height is 4 times the height
of the pole.

Often it is easy to use your own shadow to make the comparison, since you know your own
height. By calculating how many letig of your shadows fit inside the shadow of the tree
you can estimate the height of the tree. You can do the same for a building or any vertical
structure.

This method for measuring heights is based on comparing similar triangles. Similar triangles
are tte same shape, but of different size; like two shirts of different sizes. More formally, two
triangles ABC and fBiCj are similar if their angles are equal in pairs, as in Fig. 1, where
angle A = angle A", angle B = B” and angle C = C’". If two trianglesiar#ar, the one with

sides of length x, y and z, then there is some number k so that the lengths of the other

triangleds sides are kix, kly, kIlz..
C .
/\
A B A' B'

Fig. 1 Similar triangles

How does this concern measuring heights from shadows? The reason comes faiowisas
First of all, since the sun is so far away we may think of light from the sun as consisting of
parallel rays.
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Suppose that the top of the tree we are concerned with is at the point T (see Fig. 2) and its
bottom at B. The sun casts a shadow thaereds from B to the point E, the end of the
shadow. Thus we have a triangle BTE with a right angle at the point B since the tree is at right
angles to the ground. By measuring the length BE of the shadow of the tree, we can determine
t he tr ee Ofsve Havwe agpferenceB T i

The reference we obtain by measuring the shadow of a person standing upright, i.e. also at
right angles to the ground. Suppose the top of the person is represented by the point P, the
person is standing aisfromAto®QmasinRighze per sonds sh

Now the two triangles BTE and APQ are similar, because each has amrgiatand the
angles TEB and PQA are equal, since the sun
angle of each triangle is the same. We can thexdind the lengths of the triangle BTE by
multiplying the lengths of the triangle APQ by a constant k. In particular, if we know that any

side of BTE is k times the length of the corresponding side of APQ, this will mean that all
sides of BTE are k timabe sides of APQ.

For example, suppose the shadow cast by the person is 3 meters and that the tree has a shadow
of 30 m, then the constant k must be 10. If the person has a height of 2 m, then the height of
the tree must be 10 times the height of the man20 m.

We can write this in the form of an equation in general. To find the constant k we simply
divide the length of the shadow of the tree by the length of the shadow of the man, i.e.

length of shadow of tree/length of shadow of man.
We then multipy by the height of the man, so that
Height of tree = (shadow of tree/shadow of man) x (height of man),

.3

B E A Q

FIGURE 2 Shadows

We checked the height of a building this way: By comparison, we climbed from floor one to
floor two, measuring the number of stepsefighwere 16. Each step was 16 centimetres high,
so the total height for one floor is 16x16 = 256 cm, i.e., roughly 2.60 meters. Thsttineae

flat was therefore 7.80 meters. But since the ground floor was about one meter from the
ground, we made the Igtit to be 8.80 meters, i.e. about 9 meters. This agreed with the height
calculated from the shadows.

These are rough calculations, but the surveyor uses the same principle of similar triangles and
measuring very accurately gets precise results.
82 Theartist 6s met hod

A standard method used by artists is shown in Fig. 3. Here he holds his arm straight in front
of him and compares the various heights on his pencil. For instance, if he is drawing a head,
he gets the tip of the pencil at the top of the head deawing, and then places his thumb to
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be in line with the eyebrows. He then uses the pencil to mark this distance on his sketch. Then
in a similar way, he measures the distance of the eyebrows and the tip of the nose, and then to
the mouth and finallya the chin. In this way he gets accurate measurements. This is also
based on similar triangles. The explanation is given in 85 problem 8.

FIGURES The artistodéds met hod

Right-angled triangles appear often in practice, for instance in surveyingi &inghtangled

triangle ABC and knowing the angle at A and the length of the largesh,side can with the

aid of a table calculate the lengths of the other two sides. This is the idea of sine and cosine.
The largest side of a riglaingled triangle islso called the hypotenuse.

We would have to produce an infinite table if we listed all rgyigled triangles. We reduce

our list by considering righingled triangles with hypotenuse 1. The triangle is then
determined by one of its angles, since the sfithe angles of a triangle must be 180 degrees.
The sine and cosine are simply the lengths of the two sides in a triangle with hypotenuse 1.

Thus in the rightangled triangle ABC in Fig. 4, AB has length 1.

B 0y
\\
\\
sin(A)
\ 1
.Y
i€ \ A

cos(A)

FIGURE 4 Definition of sine and cosine

In Fig4, the side BC, the side straight in front of the angle A, is called sine of the angle at A,
and written sin(A). The side AC is called the cosine of the angle at A and written cos(A).
(Note that it is customary to write the sine or cosine of a given antjleut the final e.)

To make sure you remember which is which, you can think of sin as S in, i.e. short for
straight in front . Also you can think of cos and that the C stands for the closer side.
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The sine and cosine are useful for surveying and navggatinis interesting to note that the
gps system, which from satellites determines the latitude and longitude, uses them as well.

Extensive tables of sine and cosine exist. Some of the values are listed below in Fig. 5.

Angle in degrees| Sine Cosine
Q° 0 1

15° 0.2588 | 0.9659
300 0.5 0.8660
45° 0.7071 | 0.7071
60° 0.8660 | 0.5

75° 0.9659 | 0.2588
90° 1 0

FIGURE 5. Table of sines and cosines to 4 decimal places

There is also a useful approximation if we are dealing with very small angies. tlie vale
of an angle in degrees, and d is small, then the value @ ssn@pproximatelydp/180. For
instance, sin(0.180is 0.00p, or 0.00314, correct to 5 decimal places.

Now suppose we are given a right angiedngle XYZ with Z a right angle, see Fig. Bhen
consider the righingled triangle ABC with right angle at C and with angle A equal to angle
X. Then triangle ABC is similar to triangle XYZ. But the sides of triangle ABC are already
tabulated in the tables of sine and cosine. Since the hypotehtise wiangle XYZ ish,
which is h times the length of the hypotenuse of ABC, this tells us that the multiplication
factor connecting the sides of XYZ to ABCHhsSo to find the sides of triangle XYZ it is only
necessary to multiply the sides of ABC Inetlength of the hypotenuseof XYZ, that is the

sides of XYZ ardsin(A) andhcos(A).

X

Zz

Y

C

B

FIGURE 6. A rightangled triangle XYZ with hypotenuse
h, and a similar triangle ABC with hypotenuse 1

Example 1 A right-angled triangle has angle 45 degrees. Caieutee length of the sides if
the largest side, the hypotenuse, has length 14m.

Solution. The sides will be given by 14xsin(45and 14xcos(49. From the above table the
sine of 45 degrees is 0.7071, as is the cosine, so the length of either of thesslhestes 14

x0.7071 = 9.9.
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Example 2: A right-angled triangle has angle 30°. Calculate the length of the sides if the
largest side has length 29m.

Solution. The sine of 30° is 0.5. Hence, the length of the side opposite the 30 degree angle is
29xsin(30) = 29 x0.5 = 14.5 m. The length of the side adjacent to the 30 degree angle is 29
xc0s(30) = 29 x0.8660 = 25.114 m.

Example 3:Determine the lengths of all the sides in the rigihgled triangle in Fig. 7.

Solution: The sides are AC = 10xsin()5= 2.588and AB = 10xcos(15 = 9.658, from the
table in Fig. 5.

A B

FIGURE 7. A rightangled triangle with 15° angle at B and hypotenuse10

84 Dropping a stone over a cliff

One way of estimating the height of a cliff, which is over a deserted stretch of wder, is
drop a stone and with a stopwatch measure the time for the stone to reach the water. If this
time is t, then the height is given by the formula

Height of cliff = %qgf,

where g is the acceleration due to gravity, i.e. about 938 (kis formula was ®ntioned in
Example 4 88 of Chapter 6.) In our case we got a time of 1.5 s, and so the height of the cliff
was

15 x9.8 x1.5 x1.5=11.025 m.
Example: Using a ruler to calculate reaction time.

Use a centimetre ruler. One person holds the ruler at the tapawnther holds his hand near
the bottom, with forefinger and thumb almost clasping the ruler, but loosely, so that if the
ruler is released at the top it will fall.

The first person suddenly says now, and releases the ruler. The second person mhist clasp
finger and thumb together so stopping the falling ruler. One then notes the distance the ruler
has fallen before the second person reacts and grabs the ruler. The reaction time is then
calculated from the formula

s = gt
From this formula we see on ftiplying by 2 and dividing by g that
2slg =t

We then calculate the time in seconds by measuring the distance s in cm. Then calculate 2s/g
and take the square root. That is the reaction time. For g take 980 cm s

In an actual test one of us stoppedrtlier in 10 cm. Thus the reaction time was 0.14 s..
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85 Solved problems and other optional topics

1. Suppose you are measuring the height of a building with a shadow 20 meters long,
and your shadow is 5 m. long. If you are 2 m tall, how high is the buildg?

Solution. We use the formula we found in 81 (with the slight modification that it is a building
and not a tree that we are concerned with).

Height of building = (shadow of building/shadow of man) x (height of man)
If h is the height of the building, théh = 20/5 x2 =8 m.
2. Explain why sine of 0° is 0 and sine of 90° is 1.

Solution. For an angle of 0° it is not exactly clear how to define the sine. But if we take a
right-angled triangle with hypotenuse 1 in which the angle is very small, we can s#w®etha

side, which defines the sine, becomes very small indeed, and the smaller the angle the smaller
the side becomes. It seems reasonable to define the €ihas0.

Similarly we see what happens when the angle approaches 90°, where it is clear sk th
opposite the angle becomes larger and larger and seems to be getting closer and closer to the
hypotenuse 1. It is thus natural to define the sine of 90° as being 1.

3. Determine the sine of 30° and 60° without the use of tables.
Solution. The triargle in Fig. 8 has all three sides of length 1.
B

D

FIGURE 8. Equilateral triangle with sides of length 1.

The angles are also equal, so each measures 60°. A perpendicular dropped from the vertex B
to the base bisects the base, thatuts the base in half, so AD = DC. and AD = 1/2. Also,
BAD is a rightangled triangle with hypotenuse BA of length 1.

Since the angle BAC is 60°, the angle BAD is 30°, so sin(30°) = AD = 1/2. Also, since ADB is
a right triangl em, Al¥ y BDPyABh Hepaer(HB3+8B° = 1, boeBOr e
the side opposite the 60° angle at A, is the square root of

1-(1/2)* = 3/4,
which means cos(30°) = 0.866.

4. A surveyor measures the angle of a top of a building at 15 degrees at a distance of 20
meters. His instrument is at a height of 1.5m. What is the height of the building?

Solution: Refer to Fig. 9.
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We know that the triangle ABC is similar to a triangle XYZ with hypotenuse 1 and angle 15°,
which has sides YZ = sin(I= 0.2588 and XZ = cos(1p= 0.9659 as listed in Fig. 5. Thus,

the sides of ABC are simply a multipkeof the sides of XYZ, so, in particular, ACkxXZ.

Thus the factok is calculated by taking

AC/XZ = 20/cos (15°) = 20/0.9659 = 20.706.

Thus, BC = 20.706x sin(15°)= 20.706 x 0.2588.359. To get the height of the building we
must then add 1.5 meters, thus getting a final height of 6.859 meters.

FIGURE9. A surveyor calculates the height of a building.
5. | stood on the top of a cliff and dropped a stone. It took 3 seconds befor&édard the
splash when the stone hit the water below. What is the height of the cliff?
Solution: The distance is calculated from the formula
distance fallen = g,
In this caset = 3 andg, as we know, is 9.8 nfisThus, the distance is ¥2x9.8x9 = 44.1 m.
6. Remark.

For the next two problems we will accept the following fact from physics: A force F at an
anglea can be regarded as the result of two forcearfd F; acting at right angles to each
other, as shown in Figure 10. In particular, the two forces ar

F1 = Fxsin@) and k = Fxcosé).

FIGURE10. The force F can be regarded as the sum of two forces aangles to
one another

7. Explain why if the sides of a military battle tank are oblique rather than vertical, a
shell is less able to penetratd.iFor example, consider the shell hitting the tank at an
angleof90and then, if the tankods s.ides are sl ant

Solution; We use he remark in 6 aboVvethe shell hits a vertical side of a tank standing at an
angle of 90 degrees wita force F, then the force acting at that point is going to be F.
However, if the angle at which it is directed is 30 degrees, then the force can be regarded as
the result of the two forces, Fxcos(Band Fxsin (30. The force of Fxcos(3)is parallel ©

the tanks armour, and so does not help to penetrate it. The other force of Fxsn{38F
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and this is the effective penetrating force.
reduce the shell 6s i mpact.

8. Sunbathing at an angle rather thardirectly. Suppose you are lying in front of the sun
with the rays coming in at 90 or at 30 degrees. The effect is considerably reduced
according to sine of 30 degrees.

Solution:1 f the intensity of the sunds holdsdfarat i on
it, that is the intensity can be regarded as two intensities, atangjis, the one of

Ixsin(30) and Ixcos(30), The intensity parallel to the skin does not cause any sunburn, and
the only part that gives sunburn is Ixsin(88 ¥2xI.

The same t ype of argument hel ps to explain why
angles, winter is colder than summer.

9. Explain how the artistds met ho

O
D A

FIGURE1IO. The artistds method expl ained
In Fig. 10 the bottom of the vertical @gt we are drawing is at the point D and the pencil is
held vertically at the point A. The artistos

The point C represents a point on the object which is at a heighdve the bottom point.
Seen by the artist this point is at a heighkxpbn the pencil which is fixed at the point A.
Since he triangles OAB and ODC are similar, we have that

xJOA =x/OC, or that'= (OA/OD) x.

Thusx™is proportional tax and with this method we get a direct scaling of the object to be
drawn.

63 (153 63



64

Chapter 8

LOGARITHMS AND NATURAL LOGARITHMS

AThe invention of | ogarithms saved astr ol
t hei r-Laplacee s 0

81 Multiplying by adding. Logarithms

FIGURE 11. John Napier (1550617)

Multiplication is more time consuming than atiloin. To multiply two &digit numbers, we

need to perform 64 multiplications and several additions. On the other hand, to add two 8
digit numbers we need only add 8 times. The difference is large and gets much larger with
every increase in the number ofis, so after the invention of the telescope ushered in a
revolution in astronomy, which, in turn, necessitated large and precise calculations, it became
a matter of time before a method of simplifying calculations would be found. The answer
was: logaritims.

John Napier in Edinburgh published the first table of logarithms in 1614. It is said that Henry
Briggs, professor of geometry in Gresham Co
system of logarithms that he was speechless for fifteen minutestidefirst met, gazing at

Napier with admiration. Then he explained that he had travelled especially to see Napier and

enquired, e by what engine of wit or ingenu
help in astronomy. .. .

Ten years later,ni partial collaboration with Napier, Briggs published a new table of

|l ogarit hms, which he called Acommon | ogaritdth
today.
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In Fig. 2 we have a short table of common logarithms. In each column the number ohtthe rig
is the logarithm of the number on the left. Briggs produced a table of logarithms to 17 places,
which meant it could be used to find products of up taligit numbers, correct to 16 decimal
places. This was a major effort and took almost the wholgdars. Since then, much larger
tables to over 200 places have been constructed.

1.0.000| 2.0.301| 3.0.477| 4.0.602| 5.0.699| 6.0.778| 7.0.845| 8.0..903 9.0.954
11.041| 21.322| 3.1.491| 4.1613| 51.708| 6.1.785| 7.1.851| 8.1.908 9.1.959
12.079| 22.342| 3.2505| 42.623| 52.716| 6.2.792| 7.2.857| 8.2.914 9.2.964
13.114| 23.362| 3.3.519| 43.633| 53.724| 6.3.799| 7.3.863| 8.3.919 9.3.968
14.146| 24.380| 34.531| 44643| 54.732| 6.4.806| 7.4.869| 8.4.925 9.4.973
15.176| 25.398| 35.544| 45653| 55.740| 6.5.813| 7.5.875| 8.5.929 9.5.978
16.204| 26.415| 3.6.556| 4.6.663| 56.748| 6.6.820| 7.6.881| 8.6.934 9.6.982
17.230| 2.7.431| 3.7.568| 4.7.672| 57.756| 6.7.826| 7.7.886| 8.7.840 9.7.987
18.255| 2.8.497| 3.8580| 48.681| 58.763| 6.8.833| 7.8.892| 8.8.944 9.8.901
19.279| 29.462| 39591 | 49.690 | 59.771| 6.9.839| 7.9.898 | 8.9.949 9.9.996

10.01.000

FIGURE 2. Table of common logarithms

This is the way logarithms are used to multiply. If we wanmtfind the product of two
numbers,x andy, we look up their logarithms in a table of logarithms. The sum of these
logarithms will be the logarithm of their product. The answer is the number with this
logarithm, which then can be found from the table gakithms, such as the one in the above
table. For example, from the table,

logarithm of 2 = 0.301 and logarithm of 3 = 0.477.

The sum of these two logarithms, 0.778, will be the logarithm of the product of 2 and 3,
which we find from the table to be thegkrithm of 6. This is a trivial example, but, in
general, we can use tables of logarithms to calculate more difficult products easily.

If we denote the common logarithms»éandy by Log(x) and Logy), then what we said in
the previous paragraph transkte the equation:

Log(x) + Log(y) = Logxy).

Logarithms look like magic, but this is actually nothing but the law of exponents as explained
in Chapter 2 84. For the theory see the explanation in 85 of this chapter.

The initial impetus for logarithms as w&aid was the need to simplify multiplication.
However, we can now do this extremely quickly with the aid of computers, so what is the
point of studying logarithms? The answer is that logarithms are still extremely useful in
theory. For example, as we dhake later (in Chapter 15) the idea of logarithms gives a
formula for approximating the number of prime numbers less than a given number n. (A
prime number is a number like 5 or 7 or 17 which is not itself the product of smaller numbers.
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An example of a @an-prime number is 6, the product of 2 and 3.) It is difficult to see what the
logarithm could possibly have to do with prime numbers, and the result is indeed a surprise.

Other uses of logarithms are in chemistry to define acidity of a substance aodstic; to
define decibels, the unit of sound intensity. We will not discuss these but point out that they
are important applications of the logarithm.

82 Doubling your money

As an application of logarithms, suppose you invest one pouxih aterest peannum. A

good approximation to the number of years required to double your money at this rate of
interest is 6. For example, if the rate of interest is 7%, it will take just under 10 years to
double your money. This rough approximation is more accwitbesmall values ok, but is

still useful. We will explain how this works in 86, problem 1.

Example.
If you receive interest at 3%, how long will it be before you double your money?
Solution: Divide 69 by 3 to get 23 years.

As this is a long time, mayhg this case one would want to know how long it takes for your
money to increase by 40%. The rough rule in this case is to divide 34 by the interest rate.
Thus with a 3% interest rate, to increase your money by 40% will take approximately 34
divided by tle interest rate, i.e. 34 divided by 3 or between 11 and 12 years. See 86 problem 2
for an explanation of why this works.

A3 Eukeréds

Common logarithms are not the only ones in use. There are other logarithmsnatiied
logarithms which have many usemainly scientific. In Chapter 15 we will use this logarithm

to explain a formula giving an estimate for the number of prime numbers less than a particular
number. To understand the difference between the natural logarithms and common
logarithms, we chage direction. We shall define a new consigras famous in mathematics

as the constamt.

To see howe comes about imagine that you invest a unit of money, say, a pound or a dollar,
at a rate ok per cent per annum. That means that your return at the end of the year will be

(1 +x/100).

If we replaced/100 byy, the return can be expressesi(1 +y). Next, suppose that the ratexis
percent per year, but paid every six months. That means that every pound or dollar invested
will return (1 +y/2) pounds or dollars after the first six months, and this money will itself get
an interest ok/2 percent for the next six months. Hence, the total you will get for one year is
will be

(1+y/2)x(1+y/2) = (14y/2)*.

Similarly, if the rate isx% payable every 3 months, that is, 4 times a year, the return after 1
year will be

(1 +y/4)*,

In general, if inérest is paid at the end of n equal periods per year, the total return for one year
will be

(1 +yn)".
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The table below shows the values of (¢/r) " for y= 1 and various values aof

Value ofn  Value of (1 + 1) "

10 2.593742
100 2.704814
1000 2.716924
10000 2.718146

1,000,000 @ 2.71828

FIGURE 3. Approximating (1+1/r)

The question is, what happens msncreases further? Here we come face to face with
fundamental and subtle concepts, which are the subjects in more advanced courses in
mathematis. The best we can do is to calculate (1r) 1/with n as large as we can manage.

We then hope that this is close to the correct result and that nothing unexpected will happen
with largern. Sometimes this method works reasonably well, sometimes itdijgeestrously

wrong. To be sure of what we are talking about requires a course after the first course in
calculus. Neither Newton nor Leibniz, the discoverers of the calculus, had a complete
understanding of these concepts, and indeed it has taken solyeaBf@fter them to develop

the proper ideas.

In this case, however, largeproduces no surprises, and we will get a number approximately
2.718. This is the number the Swiss mathematician, Leonard Euler-1¥83J, callede. It
has retained this nametius day.

84 The natural logarithm is roughly 2.3 times the ordinary logarithm

The logarithms discovered by Briggs are called common logarithms. They are also called
logarithms to the base 10, they are defined in terms of exponents of 10 and satisfy

Log(10) = 1.

Natural logarithms, usually denoted byxn(are defined in terms of exponentseadnd have

the same property as common logarithms, in that multiplication can be replaced by addition.
They are also called logarithms to the basecause they arbased on exponents efather

than of 10. In particular, Ief = 1, and, as we already have said, the natural logarithm retains
the important property that

In(xy) = In(X) + In(y).

For ordinary calculations logarithms base 10 are more convenient, buhéoretical
guestions logarithms basehave important advantages. One disadvantage is that a table is
much more difficult to construct than for common logarithms. Fortunately, there is a
conversion factor: To obtain k¢ multiply Log(x) by In(10), whid is approximately 2.3026.

An interesting approximation for In(1 ¥ whenx is small isx. For instance, In(1 + .001) =
.000999950033, which is very close to .001 The smaikethe better the approximation.
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If x is a very large number with n digits, good approximation to Log) is (n1). For
instance, Log(5,613,678) = 6.749, to 3 decimal places. The error in approximating this as one
less than the number of digits, i.e. by 6, is less than 1, so this is accurate to 20%. If the number
has 100 digits, #error is at most 1, and so the approximation is correct to 1%. In general, the
larger the number, the better the accuracy of this rough approximation.

85 Theory of logarithms

Theory of logarithms. To expl ain Briggs6é common dfogari:t
exponents, introduced in Chapter 2. For any numéegnd each whole number & is

defined as the product af copies ofa andn is called theexponentor power ofa. For

example, 2= 2x2x2 = 8. We defina'= a, anda®= 1.

There are two laws @xponents we need:
aM™xa"=a™m + n, and em)n =a™

For example, 1310° = 10, that is, the product of two 10s times the product of three 10s is
the product of five 10s. Also, (3§ = 1¢.

I n Briggsdé system txhweitteh as o), is tefinad as the expoment mb e r
of 10 which givex, that is, Logg) =y if

10=x
For example, Log(100) = 2, since’t910x10 =100, Log(10) =1, since ‘ta0.
To define logarithms we will need to define’ fr exponents y other than whole numbers.

Fractions as exponentsLet n be a positive integer and let= 1/n. Thena® is defined to be
thenth root ofa. Thus #*is that number whose square is 4, and, hente, 2 If x=m/n, i.e.,
one positive integer divided by another, we defitigto be themth power ofa™™. For
instance,

2%2 = (2% = (1.41425 = 2.828.

So far we have defined for all exponents which can be written in the fomn, wherem

and n are whole numbers. Such numbers are called rational numbers. But there are many
numbers whikb are not rational numbers (for example, the square root of 2, as explained in
Chapter 14, 85. Nevertheless it is possible to defifier any positive number, but a precise
definition uses the concept of limit, which we do not discuss here. Insteadl\aecept that

this can be done, and we will also assume that the closer a rational ryusbex, the better

a’ is an approximation ta”. For example, the square root of 2 is approximately 1.414, which,

is 1414/1000, sa® 4s approximately the 141th power of the 100€h root ofa.

Negative exponentslf the above law of exponents is to hold for both positive and negative
numbers, therg*x a* should bea** = a°= 1. Therefore, we defirg* = 1/a*. For example,

23=1/2=1/8.

Definition of logarithms to the basea. If & =y, thenx is defined to be the logarithm gfto
the basea, and is written as lQg@y). In particular, common logarithms can be defined as
logarithms to the base 10.

Definition of the natural logarithm (also called logathm to the base). If € =y thenx is
the natural logarithm of, written as< = In(y).
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Laws of logarithms
1. Log(x) + Log(y) = Log(xy)
To see this let Log = X'and Logg) =y, Then,xy= 10°10" = 10" so, by definition,
X'+ y'=Log(xy), i.e., Log{) + Log(y) = Log(xy),
2. xLog(y) = Log(y").

This follows from raising both sides of the defining equatips, 10°9%), to the powerx.
Thus, y* = (10°9Y)* = 1099 j.e., xLog(y) is the exponent of 10 which give%, so, by
definition, Log§) = xLog(y).

86 Optional worked examples
1. Why does the rough rule for doubling your money work?

Solution: If the interest rate i%%, the return oM invested for n years iI(1 + x/100)". If
this is to double, (1 ¥/100)'= 2. Taking the natural logarithm on haides of the equation,
the left hand side equals In(1xA.00)' = n In(1 +x/100), and, sinc&/100 is small,

In(1 +x/100) is approximatelyy/1007 see 8§4.
On the other hand, the rightind side must be In(2) = .6931471.

Hence, we have the equatiox/X00 = .69 to solve. Multiplying the right side of the equation
by 100 and dividing bx we see that n is approximately 69 dividedxby

2. Why does the rough rule for the money increasing by 40% work?

Solution. An increase of 40%, means a multiplicatfaestor of 1.4 instead of 2 in the above
example, and since In().& approximately .34, for 40% the above solution becom&<a
=.34,son =34

3. Why is In(x), the natural logarithm of x, equal to In(10) times LogX)?

Solution: By definition, x = "™, Also, x = 10°%, and since 10 £"%, x = (N0,
Hencex = e"OL09¥ sq |nk) = In(10)Log).

4. Given that Log(2) is approximately 0.3, find Log(5).

Solution. Since 2x5 = 10, Log(2x5) = Log(10) = 1. Hence, Log(2) + Log(5)so1,09(5) is
approximately 0.7.

5. Use 2°to find an approximation to Log(2).

Solution. Since 2° = 1024, 2°is approximately 1b Taking the 18 root of both sides gives,
10°3= 2, so Log(2) = 0.3, approximately. Actually, to 4 decimal places, Leg(23010.

87 Logarittihms and Planeetary Motion

Kepl erds Laws

Astronomers by the 1600s had observed the planets, established their distance to
the sun, and their period, i.e. the time it took for the planet to return to its orginal
position. These figures are summarized in the table bleow. The period is measured
in days, and the distance is measured with the distance of the earth to the sun as
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unit. Thus from the table, the distance of Jupiter from the sun is a little more than 5
times the distance of the earth to the sun.

Plantet Mean distance D to sun Period T of rotation in days
Mercury 0.387 0.241

Venus 0.723 0.615

Earth 1.000 1.000

Mars 1.524 1.881

Jupiter 5.203 11.862

Saturn 9.555 29.458

The relationship between T and D is not easy to see, but by condiering In(T) and
In(D, it seems as if In(T) is one and a half times In(D).

We have listed In(D and In(T) in the table below. We have calculated a fourth
column by multiplying In(D) by 3/2. This last column agrees well with the third
column In(T), with an error of at most 1 in a 1000..

Plantet In(D) In(T) 3/23In(D)
Mercury 10.949 11.423 11.424
Venus 10.324 10.486 10.486
Earth 0.000 0.000 0.000
Mars 0.421 0.632 0.632
Jupiter 1.649 2.473 2.474
Saturn 2.257 3.383 3.386
Thus we have Keplerodos | aw

3/23In(D) =In(T)
This is the third of Keplerdés famous | aws.
We can simplify the left-hand side to In(D¥2) and so if we calculate e to this power
we get
D¥2=T..

This is indeed a remarkable formula.

88 Earth quakes measured on the Richter scale
Earthquakes are usually measured on the Richter scale.

The details are involved but we will give a simplified version. The severity of an
earthquake 100 kn away can be calculated as follows.
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To set up the scale, Richter decided on a certain reading S on the seismograph
whould be taken as a standard. Then if a seismograph 100 km away recorded | on
the seismograph, the Richter reading was defined to be

Log(l/S).

That is, we divide the intensity | by the standard S and then take the logarithm, So if
an earthquake gave a reading 10 times as large as the standard S, its Richter
number would 1, if it was 100 times larger, its reading would be 2 and if it was a 1000
times larger, its reading would be 3.

The seismograph of course has to be specified and there has to be a way for dealing
with earthquakes which are at other distances than 100 km. The purpose of this
example is to illustrate the use of the logarithm for this scale. There is also a
logarithmic scale used for sound and also one for the apparent magnitude of stars.

A Richter value of 4 corresponds to light eathrquakes, usually without significant
damage, but easily noticed shaking a nd ratling.

A Richter value of 8 corresponds to a severe earthquake causing serious damage
over an area of several hundreds o kilometres.,

A Richter ,value of 9 would be devastating over an area of many thousand
kilometeres. A reading of 10 has fortunately not yet been recorded. ,

89 Some Historical remarks

Around 1600, Lippershay invented the telescope in Holland. At first this invention was
classified as a military secret, but when Galileo got wind of it he fashioned one on his own.
His observations led to great strides in astronomy, which, in turn, ledfftots by
astronomers to simplify the many precise numerical calculations involved. The main
problems came from spherical trigonometry with the need to multiply numbers with a large
number of digits precisely.

In 1524, Stifel described the basic prineplof logarithms, but did not carry his ideas through

to constructing a table. Almost a hundred years later the Scot, John Napier, after working
twenty years, published the first table. It was he who called his exponents logarithms. His
table was an immedie success and made an impact similar to that made by the introduction
of computers in our time.

Napierds original system was not based on
his table of logarithms was very long. It had to include logaritbimall numbers, not just

from 1 to 10. Briggs realized the convenience of using powers of 10, and in 1624 published
his table, which greatly simplified the use of logarithms.

The advantage of using base 10 is in the construction of tables. A table obndagarithms
of numbers from 1 to 10 is readily extendable to any number. The rule is to express the
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number as a number, say between 1 and 10, times 10 to some exponent. The common
logarithm is then the exponent of 10 plus Ldgfor example, 5,613,87= 5.613678 x 10
SO

Log(5,613,678) = 6 + Log(5.613678).
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Chapter 9

COORDINATE GEOMETRY

Algebra was one thing, and Geometry another. Descartes made them one.

FIGURE 1. René Descartes (159650)

The idea of describing the position of a point in a plane by giving its distances from
each of two lines that are perpendicular to one another is deddgmimple. But it

leads to two important consequences: The ability to visualise how quantities depend
on one another, and also a link between algebra and geometry. A very difficult
problem in algebra may in its geometrical translation prove to be $&\aid,vice

versg a difficult geometrical problem may turn out to be easier to handle in its
algebraic translation. We owe this ingenious idea to the French mathematician and
philosopher, René Descartes (189%50). His methods have been expanded and
improved by many other mathematicians, to make the impressive subject we have
today.
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81 Coordinates
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FIGURE 2. Coordinates

In Fig. 2 we have drawn two straight lines, OX and OY, which intersect in a point O, and are
at rightangles. The position of any mbican be described by a pair of numbers, the first gives
the horizontal distance of the point P to the vertical line OY, while the second gives the
vertical distance of P from the horizontal line OX. Distances above OX are taken to be
positive, while distnces below OX are taken to be negative. Distances to the right of OY are
taken to be positive, while distances to the left of OY are taken to be negative. The position of
a point is indicated by bracketing these two numbers together. And this bracketed pa
numbers are called tlmordinatesof the point.. For instance, in Fig. 3, the coordinates of the
point P are (2,1), those of the point Q are (1,2), those of Rza+&.%), and the coordinates of

the point S are-8, 0.75). We call the line OX theaxisand OY they-axis, while the point O

is called theorigin. Any collection of points on the plane is callegraph.

b4 3
5N 123
> P(2,1) —
S(- 3,0.75)
X
7 A BT e s SR ) v | 2 3 3
e AR 1
R 2,- 1.5)
]
2

FIGURE 3. Examples of coordinates
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82 Graphs as a concise source of information

The first important application is the listirgf information. Figure 4 illustrates a graph of
temperature scale conversions. For example, to find the equivalent on the Fahrenheit scale of
20 degrees Celsius we carry out the following:

WAL HHEHE
"'u._f!:""lf‘i“

7
- — e m,, soe ———— e > ete smmes mue
: = =5 = =
3 Jal— 3
= = w‘,;,,,‘ = =
- =t — - ﬂ,‘: -
== ——
foa1
Aw,lf = =
S8 @ 26 P 28 46 60 .88 W08 ¢
Eman s S —_——— = =
= I’: = : ‘a__ - 2 =
,’ S '3, Eoix EE Tz Ti s E=
== E = =
b

FIGURE4. Graph of degrees Celsius vs. degrees Fahrenheit

We loate 20 on the OC axis and draw a vertical line till it reaches the curve, which in this
case is a straight line. The corresponding F value is 68. So 68°F corresponds to 20° C. By
using the same procedure in reverse, we can convert from Fahrenheit toadentig

Another example is illustrated in Fig. 5. This enables us to convert from pounds, £, to euros,

0. Using this graph the equivalent of 5 euro
dr awn f r o raxisto noeat thé durve. The capending value on the-&xis is 3.50,

which is the corresponding value in pounds.
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FIGURES. Graph of pound versus euro

A graph like this is very useful when travelling abroad. It is easy to make one that is accurate

at the time of travel. Simply checkeh number of euros correspor
example, and plot the point (10,14). Draw the straight line joining this point and the point O.

This then gives you the required conversions. Of course, this scheme can be used for
converting from other cuencies, using the relevant correct rates.

As a third example of the conveying of information, consider Fig. 6, the 2005 U.K. postal
rates for a T class letter, in which we can relate the weight of a letter to the postage charge to
send it.

- Ol 50 100 150 200 250 300

FIGURE 6. Caost versus weight of the package

83 Plotting a graph
Example 1The number of cells in time t.

A biologist checks under a microscope the number of cells that he is growing in a culture. At
a time t = 0 there is only one cell. The table below summarisesdtisds.
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Time t 0|1|2]|3

Numberofcells | 1 | 2| 4| 8

We plot the points with coordinates (t, number of cells at time t). For instance, at time t = 2
we have 4 cells so we plot the point with coordinates (2,4).

After plotting all these points, we then dravemooth curve joining them as shown in Fig. 7.

=

(==
[
1

i
o

FIGURE 7. Graph of number of cells at a time t

Example 2
This is an example where a quantity y depends on another quantity x and we have the
following table of values.

X 0 1 2 3 |4

y |1 |3 |4 |45]3

We agaimplot the points (x, y) and then draw a smooth curve joining these points as in Fig. 8.

FIGURE 8. Graph of Example 2
One important advantage of this visual representation is that although the data was given for 5

points only, this rough graph allows usapproximate a value gffor intermediate values of
X. For instance, a reasonable guess for xfo8.5 would seem to be 4.6.
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Example 3: Stretched rubber band.

An elastic band has various weights attached to it and its length is measured. The graph is
then sketched as in Fig. 9. We get a straight line. But we know if the weight is too great the
elastic band will snap. So it is not possible to assume that the graph will continue as it seems
to do from the beginning.

2//
57 FRERRERI | JEESK JER7 VERET JERRT JAREY ARt
1 weght
. HHH
FIGUREQ. Graph of a stretchedrubdeand6s | ength as the | oad is

Example 4: Carbon dating.
The graph in Fig.10 gives a way of finding out how old objects are by cdvboantent

All plants, animals and people absorb cari@normal carbon, and to a much less extent,
carbonl14, which is radioactive. While alive, both carbons exist in the same ratios in plants,
animals and people. After death the level of normal carbon remains constant, butlearbon
decays. In fact, carbe4 has a half life of 5,700 years, that is, -tvadf will decay in 5,700

years, half of the rest will decay in another 5,700 years, etc. The amount of normal carbon in
the specimen determines how much carlbdrthere was originally, so the remaining carbon

14 determines its age. The following graph illustrdtesrelationship between the percentage

of the carborl4 of the original remaining to the age. For instance, if just 5 percent of the
original carbonl4 remains the specimen is 24,640 years old,

Ade

P85 000 K_ﬁ ____________ 5
e 10010 0 0

F 1'1:nnn,, \

0 10+--90-8D 050

i +. o
CILCTTaUe oal DUNTE =
rermaining

!
FIGURE 10. Carborl4 dating.
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84 Equations and Geometry

Dec<artes then had this brilliant idea: He set up a way of associating equations with curves.

Consider the equation y +* x 0. This is satisfied by a variety of values of x and y. Descartes
idea was to consider all such values (x, y) that satisfied thigtiequand plot the
corresponding points. For instance; @, and (3; 9). The collection of all such points form a
curve as shown in Fig. 11. This also callee graph of the equation

-10

/. 15 \

FIGURE 11. Graph of y + %= 0.

In this way Descartes set up aat@nship between equations and curves in the plane.
Depending on the problem, it allows us to use geometrical techniques to assist in solving
algebraic problems and algebraic techniques for solving geometrical problems. This study
initiated by Descartes iknown asnalytic geometryor ascoordinate geometry.

But first, let us consider some typical equations and the corresponding graphs.
Example

2x + 3y = 2. We consider the set of all points with coordinates (x, y), which satisfy this
eqguation. To do thisre draw up a table of values. We chose various values of x and then find
the corresponding value of y to satisfy the equation. For instance, for x = 0, the equation

2x + 3y = 2 simplifies to 3y = 2 and hence y = 2/3. We do the same for various values of x
and in this way we obtain the table below:

y
2/3

0
-2/3
-4/3
4/3

2
8/3

WIN ||~ |Oo (X%

Next, we plot these points and try to join these points with a smooth curve. The result is
illustrated in Fig.12.
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FIGURE 12. The graph corresponding to 2:8y-= 2.

In fact, it turns out that the graph of any equation of the formlay + ¢ = 0, witha, b, c real

numbers, is always a straight line (excluding the trivial eas® = 0). Thus, the graph could
have been more quickly drawn by joining any twinpe(x,y) which satisfy the equation.

The next example is the graph &f« y? = 1. The corresponding curve is a circle, radius 1,
centre at (0,0), as shown in Fig. 13. As in the above example, this can be verified directly by
constructing a table of vadg and plotting the points.

| 4ty | |
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S
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FIGURE 13. The graph of the equationy* = 1.

86 The Greeks and their curves

Two thousand years ago the Greeks studied the straight line, the circle and a group of curves,
which are related to éhcircle, namely the conic sections. They studied these curves for their
own sake and their work, certainly for about 2000 years, could only be described as entirely
intellectual, without any application useless knowledge. All this was to change. These
curves became of fundamental importance in understanding our universe, and in Satellite TV.

What is a conic section? A conic section is the intersection of a double cone and a plane, see
Fig. 14. When we talk about the cone we mean a hollow cone, somékeng double
duncebdbs cap made out of paper. So the inters
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hyperbola

FIGURE 14. The intersection of a plane and a cone
gives a curved line, which is called a conic section.

These curves were given the names parabola, elapsehyperbola, depending on how they
intersect the cone, but we shall not elaborate. We simply have drawn examples to illustrate the
different types of curves in Fig. 14. In Fig.15 and Fig. 16 we have drawn the curves without
showing how they arise fromethintersection of a plane and the cone.

If you have a torch that has a wikmed cone of light coming from it, you can shine it in a
darkened room on the ceiling, and by positioning it in different ways, you will get the circle,
the ellipse and part ofié hyperbola.

One type of these conic sections is easily drawn as follows. To draw a circle we can take a
piece of string and tie its ends together, thus forming a loop. Put a nail in a board and holding
a pencil in the loop at maximum extension, you d¢antdraw a circle. If you take two nails,
positioned ata andb, separated of course, and put the loop round the nails, again you can
draw a closed figure, which is called an ellipse. Thus in this case there are two key points, the
nails, and each of thegecalled docusof the ellipse. (The plural of focusfisci).

d

FIGURE 15. Ellipse with foci ab andb.

A property of the ellipse is that if you shine a light from one focus to the circumference on the
ellipse (for instance, if the circumference oé téllipse is in the form of a mirror), the light

will be reflected in the other focus, as illustrated in Fig, 15. Here the straight line we have
drawn froma is shown reflected in the circumference and then it passes through the other
focush:

An example ba parabola is the curve that a cannon ball traces out when shot out. See Fig. 16.
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FIGURE 16. A parabola, the path of a cannon ball.

87 Equations and conic sections

As mentioned above, there is an association betweeni@ugand curves. Here is a short
table with some examples.

Equation Curve

2x+3y =4 Straight line

X¥+y=1 Circle with centre at O and radius ]
X214 + 9 =1 Ellipse

xy=1 Hyperbola

The table gives examples of what are general results. \féetlsése results without proof.

The first is that any equation which involves orlgndy and numbers, such ag 2 3y = 4
(such equations are called linear) is a straight line.

Even more remarkable is the following theorem:

It concerns equations whicivolve only x, X%, y, y* and xy and numbers, the so called
quadratic equations, for instances ¥ 4x* +8y - 9y? + 17 = 0. These differ from linear
eguations in that they must involve at lest one term which is a square or else the praduct of
andy.

Then the theorem states that the graph of such an equation will correspond to a conic section.

This is a very striking result. That an equation wigndy appearing only to the powers of 1
and 2 should have anything to do with taking a section of a coemakable.

88 Applications of coordinate geometry

The first major application of the conic sections occurred between 1609 and 1616 when the
astronomer Kepler discovered three important rules of motion. The first was that the planets
moved in ellipseswit t he sun at a focus. Moreover, the
also have the form of an ellipse.

Using his three rules of motion and his law of gravity, Newton was able in 1687 to show that
Kepler's laws were a consequence. He used the connbetween equations and curves that

we have described above. The same method is used to determine the orbits of satellites. The
reason why we can watch TV in so many different places is a consequence of these
calculations.
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The reflecting property describé&d 86 is important for the antennas that are used to send and
receive the TV signals. Newton had the idea of using the reflecting property of the parabola to
design a telescope. The parabola has a focus, similar to the ellipse; but only one, not two. And
the reflecting property means that parallel light will be reflected into the focus. The same
property holds for radio waves. This is the basis of the reflecting antenna, -tadlesb
parabolic antenna. The TV programs that are sent all round the eatttie $sene principle. A

more down to earth application is in the reflectors for headlights in cars, in torches and in
spotlights.

Another important application of this reflecting principle is medical. Lithotripsy eliminates
the need for surgery to removedikey stones. To pulverize the stones the lithotripter uses
shock waves, which pass harmlessly through soft tissue. The patient is placed in an elliptical
tank of water with the kidney stone at one focus. The shock waves are generated at the other
focus. Tke procedure lasts about an hour during which time about 8,000 shock waves are
administrated.

The property of reflection from one focus to the other also explains the workings allesh
whi spering galleries, such auwndaiointhe &apitol P a ul 6 s
Washington, where, if a person stands at one

Finally to emphasise the importance of conic sections, even the paths of electrons rotating
around the nucleus of an atom are ellipses.

89 Solved Problems
1. Draw the graph of y = x + 3.

Solution. The graph of any equation of the form y = ax + b is a straight line. Hence, the graph
is determined by any two points on the graph. For example, the points (0,33 adfe on
the graph, sa iwe plot these points the graph is the straight line joining them

2. Draw the graph ofy = 5x

Solution. As in the previous example this is the graph of a straight line. Two points which
satisfy y = 5x, are (0,0) and (1,5), so the graph is the line gihise points.

3. Draw the graph of y = 5x + 3.
Solution. A straight line joining, for example, the points (0,3) and (1,8).

810 Solving problems in Geometry with algebra and vice - versa

To find a common solution to two equations, we draw the curvesspomeing to each of the
equations and observe intersections. In Figure 14 we have done this for the two equations,

y+x=4andy-x =2

From Fig. 17 we see that these two lines intersect in the point (1,3). Hence, x =1,y =3is a
common solution tohe two equations.
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FIGURE 17. Solving two equations with a graph

Algebraically, we can solve the two equations as follows: If we add the two equations, we
have (y + X) + (i x )= 2 + 4. i.e,, 2y = 6 or y = 3. We then substitute y = 3 in the first
equaion to get 3 + x = 4, so x = 1, which agrees with our first solution.

A more difficult problem algebraically is to find a common solution of the two equations
x*+y'=4andy=%ix
In Fig. 18, the graphs of the circlé«Yy? = 4 and the curve y =*x have been plotted.

1}
1

e

o

FIGURE 18. Common solutions t&x y* =4 and y = % x.

We can see from the graph that there are exactly two intersections, which are, approximately,
(1.5,1.5) andL.5,-1.5).

The solutions suggest a bit more. Since for bothtpdhre xcoordinate and the-goordinate
are equal, we might investigate what happens if wg sgtin both equations.

If we set y = x in the first equation, the resuliis- x* = 4, that is, £ = 4, and dividing both

sides by 2 gives® = 2. Substitting y = x in the second equation gives X2 i x, or, % = X,

and dividing both sides by gives 2 =x?, which agrees with what we found for the first
equation. Thus, it is true that at the common solutios,y, andx® = 2. Therefore, more
preciselyt he common sol uti oednXxsa 2ar)e. (Nroat2e, +t hda2t) &a2n di
1.414, not too far off our estimate from the graph.

Here we can see the use of geometry and algebra, each contributing to the solution.
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Chapter 10

SOLVING EQUATIONS AND GAUSS0S METHOD

Back substitution is the essence of this ingenious method.

81 Solving an equation

Consider the following problem: We are designing a budget hotel. An area, 25 meters long, is
to contain 11 rooms; and each room is to be the same size;l3a®.5 meters. The wall in

each room is to be ¥ meter wide. What valu @fill give the best possible size of each
room? See Fig. 1.

X X X X X X X X X

FIGURE 1. Designing a hotel

The number of walls is 10, and these 48d&¥ = 2.5 meters to the total. In addition there a
eleven rooms each of widiy making a total of 14 Thus the equation we need to solvexXor
is 11x+ 2.5 = 25.

If you remember your school mathematics you will be able to solve this problem straight
away. Otherwise, try guessing! Our mathematics traciould have been horrified at this

suggestion. ADonb6t guess, boy, 06 he would sa
guess?

82 Method 1: Take a guess

An easy first guess ix = 1. When we substitute= 1 in 1Xx + 2.5 = 25, the left hand side
(abbrevated LHS) becomes 13.5, while the right hand side (RHS) is 25. So the first guess was
a bit off, but it was not too bad. The next guess, so as to make the LHS bigge®,isvhich

makes LHS = 24.5. This is still not quite correct since RHS = 25,daytgood for a guess.
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The next guess, x = 2.5 makes the LHS = 30, which overshoots the mark of 25 by 5, and
indicates that the actual answer is between 2 and 2.5, but very close to ,=tnaedershot

the mark of 25 by only 0.5, whibe= 2.5 overshbthe mark by 5. We could continue in this
way, trying say = 2.1.

83 Method 2: Draw a graph

We rewrite the equation M+ 2.5 = 25 by subtracting 25 from both sides of the equation,
thus getting 141 22.5 = 0. The problem can be formulated as findiegvlue ofx to makey
= 0 in the equatiog = 11x - 22.5.

FIGURE 2. Solving the equation 11x + 2.5 = 25 by drawing the line y =i112R.5

Fig. 2 is the graph of = 11x - 22.5. The graphical solution to our problem can be obtained as
follows:

1 First, weknow from Chapter 9 that this graph is a straight line. The graph can be
drawn by finding two distinct points on the line and joining them. For the first point
we choosex = 1.5. Substitutingg = 1.5 in the equatiog = 11x 1 22.5 we findy =
- 6. Thus thepoint (1.5; 6) lies on this straight line. For the second point we chose
X = 2. Substituting = 2 in the equatiog = 11xT 22.5, shows that (20.5) is also a
point on the line. We can then draw the graph by joining these two points with a
straight lire. (There is nothing special about the choicesl.5 andx = 2, any other
choices would have done just as well.)

1 At the point where the straight line crosses xkexis the value of is 0, which
means that the corresponding valuexdd the value whiclsolves the equation 0 =
11x 71 22.5. From the graph we observe that y = 0 whenapproximately 2. This
is a good approximation since wher 2,y = 22- 22.5, that isy =- 0.5.

84 Method 3: Do what your mathematics teacher told you

The method your matheatics teacher might have taught you for solving the above problem is
based on the principle that equal mathematical operations done to both sides of an equality
produce a new equality. Using this principle the solution to the problem proceeds in the
following steps.
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